题名

評估具厚尾分配風險之避險效果

并列篇名

Hedging and Value at Risk with a Heavy Tailed Distribution

作者

朱香蕙(Hsiang-Hui Chu);張榮顯(Jung-Hsien Chang);林玉森(Yu-Sen Lin)

关键词

極小化變異數 ; t分配風險值 ; 避險比率 ; 回溯測試 ; Minimum-Variance Model ; Student-t Value at Risk ; Hedge Ratio ; Backtesting

期刊名称

經濟研究

卷期/出版年月

50卷2期(2014 / 07 / 31)

页次

141 - 173

内容语文

繁體中文

中文摘要

本文探討金融資產報酬為非常態分配時,在最適避險策略的效果。我們首度採用極小化student-t分配之風險值及條件風險值來估算避險比率。以英國金融時報100指數、台灣加權股價指數、黃金與西德州原油為現貨及其對應之期貨為避險工具,探討極小化Student-t風險值與極小化Student-t條件風險值之避險效果,是否較極小化變異數、極小化Cornish-Fisher(Cornish and Fisher, 1937)風險值、極小化Cornish-Fisher條件風險值模型等研究方法,提供較佳之避險績效。實證結果顯示,極小化Student-t風險值與極小化Student-t條件風險值避險法亦使避險組合分配產生高狹峰,但在風險值與條件風險值減少程度上優於其他方法。最後,利用回溯測試檢視各模型評估市場風險的能力。結果顯示只有極小化Student-t風險值法與極小化Student-t條件風險值通過檢驗。代表極小化Student-t風險值與極小化Student-t條件風險值法不但在避險績效上優於其他方法並且能精準地預測風險值。

英文摘要

This paper evaluates the non-normality effect of financial asset returns on the optimal hedge ratio. We adopt a new method of estimating the minimum value at risk and the minimum conditional value at risk hedge ratios based on the student-t distribution. Using spot and futures returns for the FTSE 100, Taiwan Weighted Stock Indices, Gold, and WTI Crude Oil, we examine whether the new approach works better than the minimum-variance hedging, minimum value at risk, and minimum conditional value at risk approaches based on the Cornish- Fisher expansion. Among the various models, the empirical results show that the minimum student-t value at risk and the minimum student-t conditional value at risk techniques present more efficient results. Moreover, through backtesting, the empirical results offer evidence that the new approaches accurately evaluate the market risk of hedging portfolios.

主题分类 社會科學 > 經濟學
参考文献
  1. Datastream (1978-2011), http://ers.lib.ncnu.edu.tw/cgi-bin/er/swlink.cgi.http://ers.lib.ncnu.edu.tw/cgi-bin/er/swlink.cgi
  2. Cornish, E. A. and R. A. Fisher (1937), “Moments and Cumulants in the Specification of Distributions,” Revue de l'Institut International de Statistique, 5, 307-320
  3. García-Donato, G., P. Gento and J. Ortega (2001), “Normal versus Student in Measuring Value at Risk: An Empirical Bayesian Overview,” University of Castilla-La Mancha Working Paper No. 271
  4. Agarwal, V.,Naik, N. Y.(2004).Risks and Portfolio Decisions Involving Hedge Funds.The Review of Financial Studies,17(1),63-98.
  5. Alexander, C. O.,Leigh, C. T.(1997).On the Covariance Matrices Used in Value at Risk Models.The Journal of Derivatives,4(3),50-62.
  6. Alexander, G. J.,Baptista, A. M.(2004).A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model.Management Science,50(9),1261-1273.
  7. Artzner, P.,Delbaen, F.,Eber, J. M.,Heath, D.(1999).Coherent Measures of Risk.Mathematical Finance,9(3),203-228.
  8. Blattberg, R. C.,Gonedes, N. J.(1974).A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices.The Journal of Business,47(2),244-280.
  9. Broda, S. A.(2012).The Expected Shortfall of Quadratic Portfolios with Heavy-Tailed Risk Factors.Mathematical Finance,22(4),710-728.
  10. Campbell, R.,Huisman, R.,Koedijk, K.(2001).Optimal Portfolio Selection in a Value-at-Risk Framework.Journal of Banking & Finance,25(9),1789-1804.
  11. Cao, Z.,Harris, R. D. F.,Shen, J.(2010).Hedging and Value at Risk: A Semi-Parametric Approach.The Journal of Futures Markets,30(8),780-794.
  12. Christoffersen, P. F.(1998).Evaluating Interval Forecasts.International Economic Review,39(4),841-862.
  13. Cotter, J.,Hanly, J.(2006).Reevaluating Hedging Performance.The Journal of Futures Markets,26(7),677-702.
  14. Daníelsson, J.,de Vries, C. G.(1997).Tail Index and Quantile Estimation with Very High Frequency Data.Journal of Empirical Finance,4(2-3),241-257.
  15. Ederington, L. H.,Salas, J. M.(2008).Minimum Variance Hedging When Spot Price Changes Are Partially Predictable.Journal of Banking & Finance,32(5),654-663.
  16. Glasserman, P.,Heidelberger, P.,Shahabuddin, P.(2002).Portfolio Value-at-Risk with Heavy-Tailed Risk Factors.Mathematical Finance,12(3),239-269.
  17. Harris, R. D. F.,Shen, J.(2006).Hedging and Value at Risk.The Journal of Futures Markets,26(4),369-390.
  18. Huisman, R.,Koedijk, K. G.,Pownall, R. A. J.(1998).VaR-x: Fat Tails in Financial Risk Management.Journal of Risk,1(1),47-61.
  19. Jorion, P.(1996).Risk2: Measuring the Risk in Value at Risk.Financial Analysts Journal,52(6),47-56.
  20. Kearns, P.,Pagan, A.(1997).Estimating the Density Tail Index for Financial Time Series.The Review of Economics and Statistics,79(2),171-175.
  21. Kupiec, P. H.(1995).Techniques for Verifying the Accuracy of Risk Measurement Models.The Journal of Derivatives,3(2),73-84.
  22. Leibowitz, M. L.,Henriksson, R. D.(1989).Portfolio Optimization with Shortfall Constrains: A Confidence-Limit Approach to Managing Downside Risk.Financial Analysts Journal,45(2),34-41.
  23. Lo, A. W.,MacKinlay, A. C.(1988).Stock Market Prices Do Not Follow Random Walks: Evidence from a Simple Specification Test.The Review of Financial Studies,1(1),41-66.
  24. McNeil, A. J.,Frey, R.(2000).Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Time Series: An Extreme Value Approach.Journal of Empirical Finance,7(3-4),271-300.
  25. Praetz, P. D.(1972).The Distribution of Share Price Changes.The Journal of Business,45(1),49-55.
  26. Richardson, M.,Smith, T.(1993).A Test for Multivariate Normality in Stock Returns.The Journal of Business,66(2),295-321.
  27. Roy, A. D.(1952).Safety First and the Holding of Assets.Econometrica,20(3),431-449.
  28. Simonato, J. G.(2011).The Performance of Johnson Distributions for Computing Value at Risk and Expected Shortfall.The Journal of Derivatives,19(1),7-24.
  29. Tasche, D.(2002).Expected Shortfall and Beyond.Journal of Banking & Finance,26(7),1519-1533.
  30. Zangari, P.(1996).A VaR Methodology for Portfolios that Include Options.Risk Metrics Monitor,1,4-12.
  31. Zhou, G.(1993).Asset-Pricing Tests under Alternative Distributions.The Journal of Finance,48(5),1927-1942.
被引用次数
  1. (2018)。台灣股票期貨之流動性風險值評估。中華管理評論,21(1),233-253。