题名

重隨機假設下動態違約相關性之描述及其資訊內涵:以指數型信用擔保債權憑證為例

并列篇名

On the Characterization and Information Contents of Dynamic Default Correlation under the Doubly Stochastic Assumption: The Case of iTraxx CDO Tranches

DOI

10.6226/NTURM2014.APR.D08

作者

江彌修(Mi-Hsiu Chiang);邱信瑜(Hsin-Yu Chiu);王盈心(Ying-Hsin Wang)

关键词

動態違約模型 ; 混合卜瓦松跳躍過程 ; 資產動態存活機率 ; default correlations ; mixed Poisson jump processes ; contagious effects

期刊名称

臺大管理論叢

卷期/出版年月

24卷S1期(2014 / 09 / 01)

页次

97 - 132

内容语文

繁體中文

中文摘要

本文建立信用資產債權群組之動態違約相關性模型。其中,我們允許異質性信用風險事件之抵達由雙重(Autonomous)混合型卜瓦松跳躍過程(Mixed Poisson Jump Processes)所描述,且藉由跳躍幅度(Jump Sizes)反映信用事件之於信用資產池(Reference Pool)聯合存活機率(Joint Survival Probabilities)的危害程度。本文藉由提供驅動信用事件發生之頻率(Default Intensity)服從一雙參數伽瑪(Gamma)及帕雷圖分配(Pareto Distribution),以描述不同市場情境下信用事件發生之密集性。我們以市場指數型擔保債權憑證iTraxx Europe為例,驗證模型之市價擬合度,且藉由校準市價反推求得各分券之隱含相關性(Implied Correlation),進一步闡述隱含相關性於分券風險特徵及信用交易策略上所呈現的意涵。

英文摘要

In this paper we present a tractable model that dynamically characterizes the correlation structure for a portfolio of credit entities. Heterogeneous credit events are modeled as the arrivals of mixed Poisson jump processes and magnitudes of jumps represent the associated impacts of credit events on the joint survival probabilities of the credit portfolio. We assume that the default intensities of both sources of risk are driven by a combination of two-parameter Gamma and Pareto distributions as to capture the clustering effects of default events under different market scenarios. We conduct calibration of the model to iTraxx Europe as an example and verify the goodness of fit between the arket spreads and the model spreads of ours. We extract the implied jump-sizes that reveal information on the correlation structure, and further explore their impacts on the risk characteristics of CDO tranches.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 經濟學
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. Azizpour, S., and Giesecke, K. 2008. Self-exciting corporate defaults: Contagion vs. frailty. Working paper, Stanford University, Standford, U.S.A.
  2. Laurent, J. P., and Gregory, J. 2003. Basket default swaps, CDO's and factor copulas. Working paper, University of Lyon, Lyon, France
  3. Totouom, D., and Armstrong, M. 2007. Dynamic copulas processes: Comparison with five 1-factor models for pricing CDOs. Working paper, Cerna Mines Paristech, Paris, France
  4. Abramowitz, M.,Stegun, I. A.(1972).Handbook of Mathematical Function with Formulas, Graphs, and Mathematical Tables.New York, NY:Dover Publications.
  5. Andersen, L.,Sidenius, J.,Basu, S.(2003).All your hedges in one basket.Risk,16(11),67-72.
  6. Brigo, D.,Pallavicini, A.,Torresetti, R.(2007).Calibration of CDO tranches with the dynamical generalized-poisson loss model.Risk,20(5),70-75.
  7. Credit Suisse First Boston(1997).CreditRisk+: A credit risk management framework.
  8. Das, S. R.,Duffie, D.,Kapadia, N.,Saita, L.(2007).Common failings: How corporate defaults are correlated.The Journal of Finance,62(1),93-117.
  9. Davis, M.,Lo, V.(2001).Infectious defaults.Quantitative Finance,1(4),382-387.
  10. Duffie, D.,Singleton, K.(1999).Modeling term structures of defaultable bonds.Review of Financial Studies,12(4),687-720.
  11. Fu, M. C.(Ed.),Jarrow, R. A.(Ed.),Yen, J. Y.(Ed.),Elliot, R. J.(Ed.)(2007).Advances in Mathematical Finance.New York, NY:Birkhauser Boston.
  12. Giesecke, K.(2003).A simple exponential model for dependent defaults.Journal of Fixed Income,13(3),74-83.
  13. Giesecke, K.,Spiliopoulos, K.,Sowers, R. B.(2013).Default clustering in large portfolios: Typical events.Annals of Applied Probability,23(1),348-385.
  14. Giesecke, K.,Weber, S.(2004).Cyclical correlations, credit contagion, and portfolio losses.Journal of Banking and Finance,28(12),3009-3036.
  15. Graziano, G. D.,Rogers, L. C. G.(2009).A dynamic approach to the modeling of correlation credit derivatives using Markova chains.International Journal of Theoretical and Applied Finance,12(1),45-62.
  16. Hull, J.,White, A.(2004).Valuation of a CDO and an n-th to default CDS without Monte Carlo simulation.Journal of Derivatives,12(2),8-23.
  17. Hull, J.,White, A.(2008).Dynamic models of portfolio credit risk: A simplified approach.Journal of Derivatives,15(4),9-28.
  18. Li, D. X.(2000).On default correlation: A copula approach.Journal of Fixed Income,9(4),43-54.
  19. Longstaff, F. A.,Rajan, A.(2008).An empirical analysis of the pricing of collateralized debt obligations.The Journal of Finance,63(2),529-563.