题名

多元迴歸的自變數比較與多元共線性之影響:效果量、優勢性與相對權數指標的估計與應用

并列篇名

The Impact of Multicollinearity on the Evaluations of Regressors: Comparisons of Effect Size Index, Dominance Analysis and Relative Weight Analysis in Multiple Regression

DOI

10.6226/NTUMR.2017.JAN.A103-022

作者

邱皓政(Haw-Jeng Chiou)

关键词

相對權數分析 ; 優勢分析 ; 壓抑效果 ; relative weight analysis ; dominance analysis ; suppression effect

期刊名称

臺大管理論叢

卷期/出版年月

27卷3期(2017 / 09 / 01)

页次

65 - 108

内容语文

繁體中文;英文

中文摘要

迴歸分析雖廣泛應用於社會科學研究,但過度仰賴顯著性檢定與迴歸係數而忽略了效果量與相對重要性的評估,本文除了檢視乘積係數等早期指標,並整理近來提出的優勢分析與相對權數分析,以模擬數據進行增強、壓抑與重疊等不同型態的共線性效果下各種指標的表現差異,並以「華人家庭動態資料庫」2011 年的調查資料,檢驗人口變數與人力資本變數對於2,325 名臺灣民眾的薪資差異的影響。研究結果指出,多元共線性對於自變數效果量與相對重要性的影響非常明顯,相對權數分析與優勢分析的相對重要性指數的表現最為穩定,其中優勢分析具有相當彈性能夠提供更豐富的變數效果與重要性資訊。最後本文對於各種指標策略進行整理比較,並說明在多元迴歸上的應用策略。

英文摘要

Regression analysis is frequently used in social sciences. However, regression analyses often rely heavily on hypothesis testing and interpretations of regression coefficients. As a result, the effect sizes of regression models as well as the qualities of individual predictors have long been ignored. This paper reviews several indices that can be used to evaluate the effect size and relative importance of predictors, the relative weight analysis (RWA), and the dominance analysis (DA) in multiple regressions. A simulated dataset is used to examine the impacts of mutlicollinearity, including the enhancement, suppression, and redundancy effects, on the evaluation of the effect size and relative importance of predictors. A sample of 2,325 Taiwanese adults selected from the 2011 Panel Study of Family Dynamics (PSFD) are used to demonstrate the use of those indices in predicting the salary differences. Results suggest that the indices based on RWA and DA are recommended for evaluating the relative importance of predictors. In particular, DA has the advantage of flexible procedures for evaluating the different facets of the dominance of predictors. The properties of the recommended index were summarized in the end of the paper.

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 經濟學
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. 林新沛(2005)。標準化迴歸係數的正確解釋。中山管理評論,13(2),533-548。
    連結:
  2. 溫福星(2013)。社會科學研究中使用迴歸分析的五個重要觀念。管理學報,30(2),169-190。
    連結:
  3. Nimon, K. F., Oswald, F., and Roberts, J. K. 2014. Yhat: Interpreting regression effects (R package version 2.0.0). http://CRAN.R-project.org/package=yhat. Accessed Oct. 6, 2014.
  4. Horst, P. 1941. The prediction of personal adjustment. Social Science Research Council Bulletin, 48: 431-436.
  5. Canty, A., and Ripley, B. 2014. Boot: Bootstrap R (S-Plus) Functions. R package version 1.3-13. http://CRAN.R-project.org/package=boot. Accessed Oct. 6, 2014.
  6. R Development Core Team. 2014. R: A Language and Environment for Statistical Computing. http://www.R-project.org. Accessed Oct. 6, 2014.
  7. Afifi, A.,May, S.,Clark, V. A.(2011).Practical Multivariate Analysis.Boca Raton, FL:CRC Press.
  8. Aguinis, H.,Pierce, C. A.,Bosco, F. A.,Muslin, I. S.(2009).First decade of organizational research methods: Trends in design, measurement, and data analysis topics.Organizational Research Methods,12(1),69-112.
  9. Azen, R.,Budescu, D. V.(2003).The dominance analysis approach for comparing predictors in multiple regression.Psychological Methods,8(2),129-148.
  10. Baron, R. M.,Kenny, D. A.(1986).The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations.Journal of Personality and Social Psychology,51(6),1173-1182.
  11. Berry, K. J.,Mielke, P. W., Jr.(2002).Least sum of Euclidean regression residuals: Estimation of effect size.Psychological Reports,91(3),955-962.
  12. Budescu, D. V.(1993).Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression.Psychological Bulletin,114(3),542-551.
  13. Budescu, D. V.,Azen, R.(2004).Beyond global measures of relative importance: Some insights from dominance analysis.Organizational Research Methods,7(3),341-350.
  14. Budig, M. J.,England, P.(2001).The wage penalty for motherhood.American Sociological Review,66(2),204-225.
  15. Cascio, W. F.,Aguinis, H.(2008).Research in industrial and organizational psychology from 1963 to 2007: Changes, choices, and trends.Journal of Applied Psychology,93(5),1062-1081.
  16. Casper, W. J.,Eby, L. T.,Bordeaux, C.,Lockwood, A.,Lambert, D.(2007).A review of research methods in IO/OB work-family research.Journal of Applied Psychology,92(1),28-43.
  17. Cohen, J, Cohen, P, West, S. G.,Aiken, L. S.(2003).Applied Multiple Regression/ Correlation Analysis for the Behavioral Sciences.Hillsdale, NJ:Lawrence Erlbaum.
  18. Cohen, J.(1988).Statistical Power Analysis for the Behavioral Sciences.Hillsdale, NJ:Lawrence Erlbaum Associates, Inc.
  19. Cohen, J.,Cohen, P.(1975).Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences.Hillsdale, NJ:Lawrence Erlbaum.
  20. Conger, A. J.(1974).A revised definition for suppressor variables: A guide to their identification and interpretation.Educational and Psychological Measurement,34(1),35-46.
  21. Cooley, W. W.,Lohnes, P. R.(1971).Multivariate Data Analysis.New York, NY:Wiley.
  22. Cooper-Thomas, H. D.,Paterson, N. L.,Stadler, M. J.,Saks, A. M.(2014).The relative importance of proactive behaviors and outcomes for predicting newcomer learning, well-being, and work engagement.Journal of Vocational Behavior,84(3),318-331.
  23. Courville, T.,Thompson, B.(2001).Use of structure coefficients in published multiple regression articles: β is not enough.Educational and Psychological Measurement,61(2),229-248.
  24. Cumming, G.,Fidler, F.(2009).Confidence intervals: Better answers to better questions.Journal of Psychology,217(1),15-26.
  25. Currie, I.,Korabinski, A.(1984).Some comments on bivariate regression.The Statistician,33(3),283-293.
  26. Darlington, R. B.(1968).Multiple regression in psychological research and practice.Psychological Bulletin,69(3),161-182.
  27. Darmawan, I. G. N.,Keeves, J. P.(2006).Suppressor variables and multilevel mixture modelling.International Education Journal,7,160-173.
  28. Dillon, W. R.,Goldstein, M.(1984).Multivariate Analysis: Methods and Applications.New Work, NY:Wiley.
  29. Fabbris, L.(1980).Measures of predictor variable importance in multiple regression: An additional suggestion.Quality and Quantity,14(6),787-792.
  30. French, S.(1988).Decision Theory: An Introduction to the Mathematics of Rationality.Chichester, UK:Ellis Horwood.
  31. Friedman, L.,Wall, M.(2005).Graphical views of suppression and multicollinearity in multiple linear regression.The American Statistician,59(2),127-136.
  32. Gibson, W. A.(1962).Orthogonal predictors: A possible resolution of the Hoffman-Ward controversy.Psychological Reports,11(1),32-34.
  33. Glauber, R.(2007).Marriage and the motherhood wage penalty among African Americans, Hispanics, and Whites.Journal of Marriage and Family,69(4),951-961.
  34. Green, P. E.,Carroll, J. D.,DeSarbo, W. S.(1978).A new measure of predictor variable importance in multiple regression.Journal of Marketing Research,15(3),356-360.
  35. Hair, J. F.,Black, B.,Babin, B.,Anderson, R.,Tatham, R.(2006).Multivariate Data Analysis.Upper Saddle River, NJ:Prentice-Hall.
  36. Hamilton, D.(1987).Sometimes R2 > r2 yx1+ r2 yx2: Correlated variables are not always redundant.The American Statistician,41(2),129-132.
  37. Hayes, A. F.(2013).Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach.New York, NY:Guilford Press.
  38. Hoffman, P. J.(1960).The paramorphic representation of clinical judgment.Psychological Bulletin,57(2),116-131.
  39. Jackson, B. B.(1980).Comment on "A new measure of predictor variable importance in multiple regression".Journal of Marketing Research,17(1),113-115.
  40. Johnson, J. W.(2000).A heuristic method for estimating the relative weight of predictor variables in multiple regression.Multivariate Behavioral Research,35(1),1-19.
  41. Johnson, J. W.,LeBreton, J. M.(2004).History and use of relative importance indices in organizational research.Organizational Research Methods,7(3),238-257.
  42. Johnson, R. M.(1966).The minimal transformation to orthonormality.Psychometrika,31(1),61-66.
  43. Kelley, K.,Preacher, K. J.(2012).On effect size.Psychological Methods,17(2),137-152.
  44. Kraha, A.,Turner, H.,Nimon, K.,Zientek, L. R.,Henson, R. K.(2012).The multifaceted concept of predictor importance: Tools to support interpreting multiple regression.Frontiers in Psychology,3(44),1-16.
  45. LeBreton, J. M.,Binning, J. F.,Adorno, A. J.,Melcher, K. M.(2004).Importance of personality and job-specific affect for predicting job attitudes and withdrawal behaviors.Organizational Research Methods,7(3),300-325.
  46. LeBreton, J. M.,Hargis, M. B.,Griepentrog, B.,Oswald, F. L.,Ployhart, R. E.(2007).A multidimensional approach for evaluating variables in organizational research and practice.Personnel Psychology,60(2),475-498.
  47. LeBreton, J. M.,Ployhart, R. E.,Ladd, R. T.(2004).A Monte Carlo comparison of relative importance methodologies.Organizational Research Methods,7(3),258-282.
  48. LeBreton, J. M.,Tonidandel, S.(2008).Multivariate relative importance: Extending relative weight analysis to multivariate criterion spaces.Journal of Applied Psychology,93(2),329-345.
  49. Lynn, H. S.(2003).Suppression and confounding in action.The American Statistician,57(1),58-61.
  50. Nakagawa, S.,Cuthill, I. C.(2007).Effect size, confidence interval and statistical significance: A practical guide for biologists.Biological Reviews,82(4),591-605.
  51. Neill, J. J.(1973).Los Angeles, CA.,University of California, Los Angeles.
  52. Nimon, K. F.,Oswald, F. L.(2013).Understanding the results of multiple linear regression: Beyond standardized regression coefficients.Organizational Research Methods,16(4),650-674.
  53. Nunnally, J. C.,Bernstein, I. H.(1994).Psychometric Theory.New York, NY:McGraw-Hill.
  54. Pedhazur, E. J.(1997).Multiple Regression in Behavioral Research: Explanation and Prediction.Fort Worth, TX:Harcourt Brace.
  55. Periard, D. A.,Burns, G. N.(2014).The relative importance of Big Five Facets in the prediction of emotional exhaustion.Personality and Individual Differences,63,1-5.
  56. Polachek, S.(Ed.)(2003).Research in Labor Economics (Vol. 22).Bingley, UK:Emerald Group Publishing.
  57. Pratt, J. W.(1987).Dividing the indivisible: Using simple symmetry to partition variance explained.Proceedings of the Second International Conference in Statistics,Tampere, Finland:
  58. Preacher, K. J.,Kelley, K.(2011).Effect size measures for mediation models: Quantitative strategies for communicating indirect effects.Psychological Methods,16(2),93-115.
  59. Schey, H. M.(1993).The relationship between the magnitudes of SSR(x2) and SSR(x2|x1): A geometric description.The American Statistician,47(1),26-30.
  60. Sellin, N.(1990).PLSPATH Version 3. 01. Application Manual.Hamburg, Germany:Universitat Hamburg.
  61. Sharpe, N. R.,Ali, A.(2009).A marketing model using enhancement variables.Case Studies in Business, Industry and Government Statistics,3(1),23-29.
  62. Sharpe, N. R.,Roberts, R. A.(1997).The relationship among sums of squares, correlation coefficients, and suppression.The American Statistician,51(1),46-48.
  63. Shieh, G.(2001).The inequality between the coefficient of determination and the sum of squared simple correlation coefficients.The American Statistician,55(2),121-124.
  64. Shieh, G.(2006).Suppression situations in multiple linear regression.Educational and Psychological Measurement,66(3),435-447.
  65. Stevens, J. P.(2009).Applied Multivariate Statistics for the Social Sciences.New York, NY:Routledge.
  66. Thompson, B.(2000).Reading and Understanding More Multivariate Statistic.Washington, DC:American Psychological Association.
  67. Thompson, B.(1995).Stepwise regression and stepwise discriminant analysis need not apply here: A guidelines editorial.Educational and Psychological Measurement,55(4),525-534.
  68. Thompson, B.,Borrello, G. M.(1985).The importance of structure coefficients in regression research.Educational and Psychological Measurement,45(2),203-209.
  69. Tonidandel, S.,LeBreton, J. M.(2011).Relative importance analysis: A useful supplement to regression analysis.Journal of Business and Psychology,26(1),1-9.
  70. Tonidandel, S.,LeBreton, J. M.(2010).Determining the relative importance of predictors in logistic regression: An extension of relative weights analysis.Organizational Research Methods,13(4),767-781.
  71. Tonidandel, S.,LeBreton, J. M.,Johnson, J. W.(2009).Determining the statistical significance of relative weights.Psychological Methods,14(4),387-399.
  72. Tzelgov, J.,Henik, A.(1991).Suppression situations in psychological research: Definitions, implications, and applications.Psychological Bulletin,109(3),524-536.
  73. Velicer, W. F.(1978).Suppressor variables and the semipartial correlation coefficient.Educational and Psychological Measurement,38(4),953-958.
  74. Waldfogel, J.(1997).The effects of children on women's wages.American Sociological Review,62(2),209-217.
被引用次数
  1. Shih-Yu Yu,Hsu-Hsin Chiang(2021)。Employer Branding and Employee-based Brand Equity: The Mediating and Moderating Effects in Multilevel Models。管理評論,40(1),131-154。
  2. 陳冠浤,高秉毅,高任首,王以德(2023)。物業管理相關企業導入政府產業補助對經營策略影響之探索性研究-高階經營決策主管個人人格特質的調節效果。物業管理學報,14(2),1-17。
  3. 陳毓文,曹峰銘,巫政頴,呂信慧(2023)。學齡到青少年期的幸福感結構精緻化:性別與年齡效果。中華心理學刊,65(2),81-108。
  4. 高任首(2023)。商務旅館、汽車旅館人力資源管理措施、員工工作價值觀與留任意願之關聯性研究。休憩管理研究,10(2),27-48。
  5. 黃怡臻、王光旭(2018)。社區人際網絡與社區意識及參與關聯性之研究:不同營造經驗社區的比較。調查研究:方法與應用,40,63-125。
  6. 游司宇,江旭新(2021)。雇主品牌管理與員工品牌權益:跨層次之中介與調節影響效果。管理評論,40(1),47-74。
  7. 張可欣,洪至祥(2022)。軍校生排球運動熱情、樂趣、涉入程度對幸福感之預測。運動休閒管理學報,19(1),78-94。
  8. 鄭香蘭,傅家芸,李碧月(2022)。以結構方程式探討護理人員線上社會支持、勉強出勤動機及勉強出勤之關係模式。健康科技期刊,9(1),28-43。
  9. (2020)。身心障礙學生大學學科能力測驗之差異分析:教育與家庭的作用。東臺灣特殊教育學報,22,133-165。
  10. (2020)。中小學教師社會地位、工作滿意與離職意圖之變遷:1997年與2015年之比較。教育與心理研究,43(2),95-127。
  11. (2021)。房價重要因素分析─以桃園青埔特區為例。臺灣銀行季刊,72(3),153-179。