题名

Use of Implicit User Feedback to Support Semantics- Based Personalized Document Recommendation

并列篇名

應用隱性回饋機制支援語意基礎之個人化文件推薦

DOI

10.6226/NTUMR.201812_28(3).0003

作者

顧宜錚(Yi-Cheng Ku);李彥賢(Yen-Hsien Lee);林純誼(Chun-Yi Lin)

关键词

document recommender system ; implicit user feedback ; spreading activation model ; semantic network ; concept-expansion ; 文件推薦系統 ; 隱性回饋機制 ; 擴散促動模式 ; 語意網絡 ; 概念擴展

期刊名称

臺大管理論叢

卷期/出版年月

28卷3期(2018 / 12 / 01)

页次

83 - 106

内容语文

英文

中文摘要

The development of the Internet and digitized documents has made it possible for data and information to be easily transferred, exchanged and shared online. However, for Internet users, this easy access to information also carries the risk of information overload. Document recommender systems are becoming an indispensable tool, helping Internet users effectively retrieve the information they need from the millions of documents available online. In this study, we design and evaluate an Implicit-feedback-based Concept-Expansion (ICE) document recommendation technique to address the difficulties inherent in acquiring relevant feedback. The ICE technique determines a focal user’s preferred documents by implicitly observing and analyzing his or her browsing behavior in order to make appropriate document recommendations. Using a domain concept heterarchy (e.g., domain ontology) and employing the Spreading Activation Model (SAM), the ICE technique expands the concepts existing in the preferred documents. Documents with a greater number of related and/or expanded concepts are then considered to be potentially appealing to the focal user and are recommended as such. A laboratory experiment was conducted to compare the system performance of the ICE technique with that of three benchmark document recommendation techniques: Explicit-feedback-based Concept-Expansion (ECE), keyword-based, and random. The results of the experiment show that the ICE approach proposed by this study is more effective than random or keyword-based document recommender systems. Although there is no significant performance difference between ICE and ECE, the ICE technique is expected to cost less in terms of user effort. Overall, the findings of this study provide some interesting implications for improving the quality of document recommender systems.

英文摘要

為協助網路使用者從大量文件中取得所需的資訊,文件推薦系統已成為必要的支援工具。本研究設計與評估以隱性回饋為基礎的概念擴展文件推薦技術(ICE),其採用隱性觀察與使用者瀏覽行為分析,來克服擷取使用者回饋的困難,並加以利用領域本體論與擴散促動模式,擴展已知的偏好文件中的概念,以推薦合適的文件給使用者。此研究利用實驗室實驗法來評估ICE系統與另外三個指標系統的差異,包括:顯性回饋為基礎的概念擴展文件推薦技術(ECE)、關鍵字基礎技術、及隨機推薦系統。實驗結果顯示ICE績效顯著優於隨機推薦及關鍵字推薦,與ECE雖無顯著差異,但是預期ICE能降低使用者的心力耗費。整體而言,此研究結果提供改善文件推薦系統品質之實務意涵。

主题分类 基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 經濟學
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. 周軒逸、練乃華(2012)。當簡訊遇上前導:品牌熟悉度、互動性、個人化、誘因之好奇效果。臺大管理論叢,23(1),239-268。
    連結:
  2. 陳妙玲、林楚彬、戴良安(2011)。廣告、顧客滿意度與研究發展對企業系統與非系統風險之效果。臺大管理論叢,21(2),55-80。
    連結:
  3. Alspector, J.,Kolcz, A.,Karunanithi, N.(1998).Comparing feature-based and cliquebased user models for movie selection.third ACM conference on Digital libraries,Pittsburgh, PA:
  4. Bauer, J.,Nanopoulos, A.(2014).Recommender systems based on quantitative implicit customer feedback.Decision Support Systems,68,77-88.
  5. Cantador, I.,Castells, P.,Bellog, A.(2011).An enhanced semantic layer for hybrid recommender systems: Application to news recommendation.International Journal on Semantic Web and Information Systems,7(1),44-78.
  6. Cheng, T. H.,Hu, P.(2007).Content-based recommendations using positive-only examples: A single-class learning approach.sixth workshop on e-business,Montreal, Canada:
  7. Crestani, F.(1997).Application of spreading activation techniques in information retrieval.Artificial Intelligence Review,11(6),453-482.
  8. Doll, W. J.,Torkzadeh, G.(1988).The measurement of end-user computing satisfaction.MIS Quarterly,12(2),259-274.
  9. Du, T. C.,Li, F.,King, I.(2009).Managing knowledge on the web: Extracting ontology from html web.Decision Support Systems,47(4),319-331.
  10. Jawaheer, G.,Szomszor, M.,Kostkova, P.(2010).Comparison of implicit and explicit feedback from an online music recommendation service.1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems,Barcelona, Spain:
  11. Knijnenburg, B. P.,Kobsa, A.(2013).Making decisions about privacy: Information disclosure in context-aware recommender systems.ACM Transactions on Interactive Intelligent Systems,3(3),20.
  12. Lee, C. H.,Cranage, D. A.(2011).Personalisation-privacy paradox: The effects of personalisation and privacy assurance on customer responses to travel web sites.Tourism Management,32(5),987-994.
  13. Lee, Y. H.,Hu, P. J. H.,Cheng, T. H.,Hsieh, Y. F.(2012).A cost-sensitive technique for positive-example learning supporting content-based product recommendations in B-to-C e-commerce.Decision Support Systems,53(1),245-256.
  14. Li, Y.(2014).The impact of disposition to privacy, website reputation and website familiarity on information privacy concerns.Decision Support Systems,57(1),343-354.
  15. Liang, T. P.,Lai, H. J.,Ku, Y. C.(2006).Personalized content recommendation and user satisfaction: Theoretical synthesis and empirical findings.Journal of Management Information Systems,23(3),45-70.
  16. Liang, T. P.,Yang, Y. F.,Chen, D. N.,Ku, Y. C.(2008).A semantic-expansion approach to personalized knowledge recommendation.Decision Support Systems,45(3),401-412.
  17. Lin, C.,Xie, R.,Li, L.,Li, T.(2014).Personalized news recommendation via implicit social experts.Information Sciences,254,1-18.
  18. Linden, G.,Smith, B.,York, J.(2003).Amazon.com recommendations: Item-to-item collaborative filtering.IEEE Internet Computing,7(1),76-80.
  19. Lops, P.,de Gemmis, M.,Semeraro, G.(2011).Recommender Systems Handbook.New York, NY:Springer Science+Business Media LLC..
  20. McNee, S. M.,Riedl, J.,Konstan, J. A.(2006).Making recommendations better: An analytic model for human-recommender interaction.CHI 2006 Conference on Human Factors in Computing Systems,Montreal, Canada:
  21. Mooney, R. J.,Roy, L.(2000).Content-based book recommending using learning for text categorization.fifth ACM conference on Digital libraries,San Antonio, TX:
  22. Oaksford, M.,Morris, F.,Grainger, B.,Williams, J. M. G.(1996).Mood, reasoning, and central executive processes.Journal of Experimental Psychology: Learning, Memory, and Cognition,22(2),476-492.
  23. Parsons, J.,Ralph, P.,Gallagher, K.(2004).Using viewing time to infer user preference in recommender systems.AAAI Workshop in Semantic Web Personalization,San Jose, CA.:
  24. Pommeranz, A.,Broekens, J.,Wiggers, P.,Brinkman, W.-P.,Jonker, C. M.(2012).Designing interfaces for explicit preference elicitation: A user-centered investigation of preference representation and elicitation process.User Modeling and User-Adapted Interaction,22(4-5),357-397.
  25. Pu, P.,Chen, L.,Hu, R.(2012).Evaluating recommender systems from the user's perspective: Survey of the state of the art.User Modeling and User-Adapted Interaction,22(4-5),317-355.
  26. Staab, S.(Ed.),Studer, R.(Ed.)(2009).Handbook on Ontologies.Berlin, Germany:Springer-Verlag.
  27. Wang, W.,Benbasat, I.(2007).Recommendation agents for electronic commerce: Effects of explanation facilities on trusting beliefs.Journal of Management Information Systems,23(4),217-246.
  28. Wei, C. P.,Chen, Y. M.,Yang, C. S.,Yang, C. C.(2010).Understanding what consumers concern: A semantic approach for product feature extraction from consumer reviews.Journal of Information Systems and E-Business,8(2),149-167.
  29. White, R. W.,Jose, J. M.,Ruthven, I.(2006).An implicit feedback approach for interactive information retrieval.Information Processing & Management,42(1),166-190.
  30. Wu, K. W.,Huang, S. Y.,Yen, D. C.,Popova, I.(2012).The effect of online privacy policy on consumer privacy concern and trust.Computers in Human Behavior,28(3),889-897.
  31. Xiao, B.,Benbasat, I.(2007).E-commerce product recommendation agents: Use, characteristics, and impact.MIS Quarterly,31(1),137-209.
  32. Xu, Z.,Wei, X.,Luo, X.,Liu, Y.,Mei, L.,Hu, C.,Chen, L.(2015).Knowle: A semantic link network based system for organizing large scale online news events.Future Generation Computer Systems,43-44,40-50.
  33. Yang, C. C.,Tang, X.,Wong, Y. C.,Wei, C. P.(2010).Understanding online consumer review opinions with sentiment analysis using machine learning.Pacific Asia Journal of the Association for Information Systems,2(3),73-89.
  34. Yu, X.,Ma, H.,Hsu, B. J. P.,Han, J.(2014).On building entity recommender systems using user click log and freebase knowledge.7th ACM international conference on Web search and data mining,New York, NY:
  35. Zhang, F.,Wang, H.,Yi, H.(2014).An adaptive recommendation method based on small-world implicit trust network.Journal of Computers,9(3),618-625.