题名

Pricing Dynamic Guaranteed Funds under a Double Exponential Jump Diffusion Model

并列篇名

在雙指數跳躍擴散過程下動態保本型商品之評價分析

DOI

10.29628/AEP.201206.0004

作者

張傳章(Chuang-Chang Chang);連雅慧(Ya-Huei Lian);蔡明宏(Min-Hung Tsay)

关键词

動態保本型基金 ; 跳躍擴散模型 ; 雙指數跳躍擴散模型 ; 拉普拉斯轉換 ; Dynamic guaranteed funds ; Jump diffusion model ; Double exponential jump diffusion model ; Laplace transform

期刊名称

經濟論文

卷期/出版年月

40卷2期(2012 / 06 / 01)

页次

269 - 306

内容语文

英文

中文摘要

本文在假設標的基金價格服從雙重指數跳躍擴散的過程下,來擴展過去文獻對於動態保本型基金之評價分析。首先,本文推導出動態保本型基金價格拉普拉斯轉換之封閉解,並進一步應用Gaver-Stehfest演算法進行拉普拉斯逆轉換,以求得動態保本型基金的價格。從文章中之數值結果,我們發現本文所提出之評價方法相較於蒙地卡羅模擬法更具有效率性但卻不失準確性。另一方面,本文亦研究在考處價格跳躍的情況下,動態保本型基金之價格改變行為,和連續型動態保本基金價格與間斷型動態保本基金價格之差異分析。最後,本文亦提供動態保本型基金價格與柏閱模型參數之敏感性分析。

英文摘要

This paper complements the extant literature to evaluate the prices of dynamic guaranteed funds when the price of underlying naked fund follows a double exponential jump diffusion process. We first derive the closed-form solution for the Laplace transform of dynamic guaranteed fund price, and then apply the efficient Gaver-Stehfest algorithm to Laplace inversion to obtain the prices of dynamic guaranteed funds. Based on the numerical pricing results, we find that the proposed pricing method is much more efficient than the Monte Carlo simulation approach although it loses a sufficiently small accuracy. On the other hand, we also provide an investigation on the behavior of prices of dynamic guaranteed funds when jump is taken into consideration. In addition, the sensitivity analyses of the prices of dynamic guaranteed funds with respect to jump-related parameters and the relative errors between the prices of continuous-monitored and discretely-monitored dynamic guaranteed fund are given in this paper as well.

主题分类 社會科學 > 經濟學
参考文献
  1. Zhou, C. (1997), “A Jump-Diffusion Approach to Modeling Credit Risk and Valuing Defaultable Securities,” Working Paper, Federal Reserve Board.
  2. Abate, J.,Whitt, W.(1992).The Fourier-Series Method for Inverting Transforms of Probability Distributions.Queueing System,10,5-88.
  3. Andersen, T. G.,Benzoni, L.,Lund, J.(2002).An Empirical Investigation of Continuous-Time Equity Return Models.Journal of Finance,57,1239-1284.
  4. Birge, J. R.(ed.),Linetsky, V.(ed.)(2008).Handbooks in Operations Research and Management Science.Amsterdam:North-Holland.
  5. Broadie, M.,Glasserman, P.,Kou, S. G.(1999).Connecting Discrete and Continuous Path-Dependent Options.Finance and Stochastics,3,55-82.
  6. Cont, R.,Tankov, P.(2004).Financial Modelling with Jump Processes.Boca Raton, Fla.:Chapman & Hall/CRC.
  7. Eraker, B.,Johannes, M.,Polson, N.(2003).The Impact of Jumps in Volatility and Returns.Journal of Finance,58,1269-1300.
  8. Gerber, H. U.,Pafumi, G.(2000).Pricing Dynamic Investment Fund protection.North American Actuarial Journal,4(2),28-36.
  9. Gerber, H. U.,Shiu, E. S. W.(2003).Pricing Lookback Options and Dynamic Guarantees.North American Actuarial Journal,7(1),48-67.
  10. Gerber, H. U.,Shiu, E. S. W.(1999).From Ruin Theory to Pricing Reset Guarantees and Perpetual Put Options.Insurance: Mathematics and Economics,24,3-14.
  11. Gerber, H. U.,Shiu, E. S. W.(1998).Pricing Perpetual Options for Jump Processes.North American Actuarial Journal,2(3),101-112.
  12. Glasserman, P.,Kou, S. G.(2003).The Term Structure of Simple Forward Rates with Jump Risk.Mathematical Finance,13,383-410.
  13. Heynen, R. C.,Kat, H. M.(1995).Lookback Options with Discrete and Partial Monitoring of the Underlying Price.Applied Mathematical Finance,2,273-284.
  14. Imai, J.,Boyle, P. P.(2001).Dynamic Fund Protection.North American Actuarial Journal,5(3),31-49.
  15. Kou, S. G.(2002).A Jump Diffusion Model for Option Pricing.Management Science,48,1086-1101.
  16. Kou, S. G.,Petrella, G.,Wang, H.(2005).Pricing Path-Dependent Options with Jump Risk via Laplace Transforms.Kyoto Economic Review,74(1),1-23.
  17. Kou, S. G.,Wang, H.(2003).First Passage Times for a Jump Diffusion Process.Advances in Applied Probability,35,504-531.
  18. Kou, S. G.,Wang, H.(2004).Option Pricing under a Double Exponential Jump Diffusion Model.Management Science,50,1178-1192.
  19. Leib, B.(2000).The Return of Jump Modeling: Is Stephen Kou's Model More Accurate than Black Scholes?.Derivatives Strategy Magazine,5(5),28-32.
  20. Merton, R.(1976).Option Pricing When the Underlying Stock Returns Are Discontinuous.Journal of Financial Economics,3,125-144.
  21. Ramezani, C. A.,Zeng, Y.(2007).Maximum Likelihood Estimation of the Double Exponential Jump-Diffusion Process.Annals of Finance,3,487-507.
  22. Tse,W. M.,Chang, E. C.,Li, L. K.,Mok, H. M. K.(2008).Pricing and Hedging of Discrete Dynamic Guaranteed Funds.Journal of Risk and Insurance,75(1),167-192.
  23. Wong, H. Y.,Lau, K. Y.(2008).Analytical Valuation of Turbo Warrants under Double Exponential Jump Diffusion.Journal of Derivatives,15(4),61-73.
被引用次数
  1. Lu, Richard,Hsiung, Ling-Yu(2018).A Performance Evaluation of Constant Proportion Portfolio Insurance: An Application of the Economic Index of Riskiness.經濟論文,46(3),429-462.