题名

Which Insurance Policy Is Mean-Variance Efficient with Dependent Background Risk?

并列篇名

何種保險單於存在相依背景風險下具有均異效率性?

作者

汪青萍(Ching-Ping Wang);黃鴻禧( Hung-Hsi Huang)

关键词

背景風險 ; 均異效率前緣 ; 比率保險 ; 自付額保險 ; 上限型保險 ; Background risk ; Mean-variance frontier ; Proportional coinsurance ; Deductible insurance ; Upper-limit insurance

期刊名称

經濟論文

卷期/出版年月

43卷1期(2015 / 03 / 01)

页次

115 - 152

内容语文

英文

中文摘要

本研究測試當存在相依背景風險下,比率保險、自負額保險、上限型保險等三種普遍存在之保險契約形式的均異效率性。本研究考處被保險人同時面臨隨機的損失與所得,其中所得線性相關於損失。首先,在給定相同保險費的支付下,本研究理論地比較這三種保單的變異數差異。其次,在損失金額服從對數常態分配的假設下,本研究將此三種保險的均異效率前緣繪於月一平面圖;結果顯示,除上限型保險外,自負額保險與比率共保皆可能最有均異效率。其次,若相依背景風險與所得呈負相關,則自付額保險較其餘兩種保險具有均異效率優勢。尤其,當存在正相依背景風險時,適當地組合此三種保單可以提高均異效率。

英文摘要

Thisstudyexaminesthemean-varianceefficienciesofthreecommoninsurancepolicies,i.e.proportionalcoinsurance,deductible,andupper-limit,inthepresenceofdependentbackgroundrisk.Thisstudyconsidersaninsuredwhofacessimultaneouslystochasticlossandincome,wherethelatterislinearlyrelatedtotheformer.First,giventhesamepremium,thisstudytheoreticallycomparesthedifferencesinvarianceamongthethreeinsurancepolicies.Additionally,themean-variancefrontiercurvesforthethreeinsurancesaredepictedonthesamegraph,assumingthelossobeysalognormaldistribution.Thisexampleshowsthat,althoughpossiblydeductibleorcoinsurance,theefficientinsurancepoliciesarenotupper-limit.Additionally,inthecasewherethedependentbackgroundriskisnegativelyrelatedtotheincome,thedeductibleinsurancealwaysdominatestheothertwo.Particularly,ifthereexistsapositivelydependentbackgroundrisk,anadequateportfolioofthethreecommoninsurancesmayimprovethemean-varianceefficiency.

主题分类 社會科學 > 經濟學
参考文献
  1. Brazauskas, V.,Kleefeld, A.(2011).Folded and Log-Folded-t Distributions as Models for Insurance Loss Data.Scandinavian Actuarial Journal,2011,59-74.
  2. Cavallo, A.,Rosenthal, B.,Wang, X.(2012).Treatment of the Data Collection Threshold in Operational Risk: A Case Study Using the Lognormal Distribution.Journal of Operational Risk,7,3-38.
  3. Chiu, M. C.,Wong, H. Y.(2012).Mean-Variance Asset-Liability Management: Cointegrated Assets and Insurance Liability.European Journal of Operational Research,223,785-793.
  4. Cox, S. H.,Lin, Y.,Tian, R.(2013).Morality Portfolio Risk Management.Journal of Risk and Insurance,80,853-890.
  5. Doherty, N. A.,Schlesinger, H.(1983).Optimal Insurance in Incomplete Markets.Journal of Political Economy,91,1045-1054.
  6. Doherty, N. A.,Schlesinger, H.(1983).The Optimal Deductible for an Insurance Policy When Initial Wealth Is Random.Journal of Business,56,555-565.
  7. Gollier, C.(1996).Optimal Insurance of Approximate Losses.Journal of Risk and Insurance,63,369-380.
  8. Gollier, C.,Schlesinger, H.(1996).Arrow's Theorem on the Optimality of Deductibles: A Stochastic Dominance Approach.Economic Theory,7,359-363.
  9. Guiso, L.,Jappelli, T.(1998).Background Uncertainty and the Demand for Insurance Against Insurable Risks.The Geneva Papers on Risk and Insurance Theory,23,7-27.
  10. Han, Z.,Gau, W. C.(2008).Estimation of Loss Reserves with Lognormal Development Factors.Insurance Mathematics & Economics,42,389-395.
  11. He, L.,Liang, Z.(2013).Optimal Investment Strategy for the DC Plan with the Return of Premiums Clauses in a Mean-Variance Framework.Insurance Mathematics & Economics,53,643-649.
  12. Huang, H. H.(2006).Optimal Insurance Contract under a Value-at-Risk Constraint.The Geneva Risk and Insurance Review,31,91-110.
  13. Huang, H. H.,Shiu, Y. M.,Wang, C. P.(2013).Optimal Insurance Contract with Stochastic Background Wealth.Scandinavian Actuarial Journal,2013,119-139.
  14. Jeleva, M.(2000).Background Risk, Demand for Insurance, and Choquet Expected Utility Preferences.The Geneva Papers on Risk and Insurance Theory,25,7-28.
  15. Jorion, P.(2001).Value at Risk: The New Benchmark for Managing Financial Risk.NewYork:McGraw-Hill.
  16. Kaluszka, M.(2001).Optimal Reinsurance under Mean-Variance Premium Principles.Insurance Mathematics & Economics,28,61-67.
  17. Lee,W. C.(2012).Fitting the Generalized Pareto Distribution to Commercial Fire Loss Severity: Evidence from Taiwan.Journal of Risk,14,63-80.
  18. Luciano, E.,Kast, R.(2001).A Value at Risk to Background Risk.The Geneva Papers on Risk and Insurance Theory,26,91-115.
  19. Mahul, O.(2000).Optimal Insurance Design with Random Initial Wealth.Economics Letters,69,353-358.
  20. Markowitz, H.(1952).Portfolio Selection.Journal of Finance,7,77-91.
  21. Nadarajah, S.,Bakar, S. A. A.(2014).New Composite Models for the Danish Fire Insurance Data.Scandinavian Actuarial Journal,2014,180-187.
  22. Raviv, A.(1979).The Design of an Optimal Insurance Policy.American Economic Review,69,84-96.
  23. Schlesinger, H.(1997).Insurance Demand without the Expected-Utility Paradigm.Journal of Risk and Insurance,64,19-39.
  24. Schlesinger, H.,Doherty, N. A.(1985).Incomplete Markets for Insurance: An Overview.Journal of Risk and Insurance,52,402-423.
  25. Vercammen, J.(2001).Optimal Insurance with Nonseparable Background Risk.Journal of Risk and Insurance,68,437-448.
  26. Verlaak, R.,Beirlant, J.(2003).Optimal Reinsurance Programs: An Optimal Combination of Several Reinsurance Protections on a Heterogeneous Insurance Portfolio.Insurance Mathematics & Economics,33,381-403.
  27. Wang, C. P.,Huang, H. H.(2012).Optimal Insurance Contract and Coverage Levels under Loss Aversion Utility Preference.Quantitative Finance,12,1615-1628.
  28. Wang, C. P.,Shyu, D.,Huang, H. H.(2005).Optimal Insurance Design under a Value-at-Risk Framework.The Geneva Risk and Insurance Review,30,161-179.
  29. Zeng, Y.,Li, Z.(2011).Optimal Time-Consistent Investment and Reinsurance Policies for Mean-Variance Insurers.Insurance Mathematics & Economics,49,145-154.