题名

漫步於隨機森林-輔以多數決學習的台股指數期貨交易策略

并列篇名

A RANDOM WALK DOWN RANDOM FOREST: ENSEMBLE-LEARNING-ASSISTED TRADING STRATEGIES FOR TAIEX FUTURES

作者

鄭仁杰(Jen-Chieh Cheng);江彌修(Mi-Hsiu Chiang)

关键词

多數機器決學習 ; 隨機森林 ; 交易策略 ; 臺灣加權股價指數期貨 ; 卡馬比率 ; Ensemble machine learning ; Random forest ; Trading strategies ; TAIEX futures ; Calmar ratio

期刊名称

經濟論文

卷期/出版年月

47卷3期(2019 / 09 / 01)

页次

395 - 448

内容语文

繁體中文

中文摘要

應用隨機森林演算法來進行未來期貨價格漲跌的分類預測,本文以技術面與籌碼面指標作為模型訓練的特徵,進而建構輔以多數決學習的台股指數期貨交易策略。藉由參數的重要性衡量,我們辨識出爭議變數,並探究參數配置的屬性擾動之於演算法預測能力及策略績效的影響。利用2007年至2018年的台股指數期貨資料,本文以多重角度測試策略之績效與穩健性。實證結果顯示,在考量交易成本之下,本文所建構之多數決學習台股指數期貨交易策略,要能於其訓練區間及測試區間皆呈現穩定勝出大盤的績效,其隨機森林模型所共同具備的參數配置必須包含3-14日MA與RSI指標、遠月期貨交易量、現貨交易量、期貨外資未平倉量與買賣權未平倉比率。

英文摘要

With the ensemble learning of specific TAIEX market characteristics drawn from technical analysis data, in this paper we construct futures trading strategies where price directional forecasts are generated by Random Forest classification models. By quantifying the model attributes' extent of contribution to the overall prediction outcomes, we identify attributes-in-dispute and explore their perturbative effects on the predictive ability of Random Forest and thus the risk-reward performance of the proposed strategies. Using 2007-2018 TAIEX futures data, our in-sample and out-of-sample test results show that, after transaction costs, risk-adjusted outperformance over the market is consistently observable when the Random Forest models adapt the 3-14 days MA and RSI indicators, far-month futures trading volume, spot transaction volume, foreign capital open interest in futures, and open interest ratio in options.

主题分类 社會科學 > 經濟學
参考文献
  1. Dutta, J.,Bandopadhyay, D.,Sengupta, S.(2012).Prediction of Stock Performance in the Indian Stock Market Using Logistic Regression.International Journal of Business and Information,7(1),105-136.
    連結:
  2. 巫和懋, H.-M.,許智翔, C.-H.(2010)。交易量在預測內部交易機率與技術分析的訊息價值。經濟論文,38(2),211-244。
    連結:
  3. Blume, L.,Easley, D.,O’Hara, M.(1994).Market Statistics and Technical Analysis: The Role of Volume.Journal of Finance,49(1),153-181.
  4. Borovkova, S.,Tsiamas, I.(2018).An Ensemble of LSTM Neural Networks for High-Frequency Stock Market Classification.Quantitative Finance
  5. Breiman, L.(2001).Random Forests.Machine Learning,45(1),5-32.
  6. Breiman, L.,Friedman, J. H.,Olshen, R. A.,Stone, C. J.(1984).Classification and Regression Trees.Belmont, CA:Wadsworth International Group.
  7. Brooks, C.,Rew, A.,Ritson, S.(2001).A Trading Strategy Based on the Lead-Lag Relationship between the Spot Index and Futures Contract for the FTSE 100.International Journal of Forecasting,17,31-44.
  8. Carling, K.(2000).Resistant Outlier Rules and the Non-Gaussian Case.Computational Statistics and Data Analysis,33,249-258.
  9. Easley, D.,O’Hara, M.(1992).Time and the Process of Security Price Adjustment.Journal of Finance,47(2),577-605.
  10. Giacomel, F.,Galante, R.,Pereira, A.(2015).An Algorithmic Trading Agent Based on a Neural Network Ensemble: A Case of Study in North American and Brazilian Stock Markets.The 2015 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies
  11. Ho, T. K.(1995).Random Decision Forests.The 3rd International Conference on Document Analysis and Recognition
  12. Ho, T. K.,Hull, J. J.,Srihari, S. N.(1994).Decision Combination in Multiple Classifier Systems.IEEE Transactions on Pattern Analysis and Machine Intelligence,16(1),66-75.
  13. Hurst, H. E.(1951).Long-Term Storage Capacity of Reservoirs.Transactions of the American Society of Civil Engineers,116,770-799.
  14. Keating, C.,Shadwick, W. F.(2002).A Universal Performance Measure.Journal of Performance Measurement,6(3),59-84.
  15. Khaidem, L.,Saha, S.,Dey, S. R.(2016).,未出版
  16. Kim, K. J.(2003).Financial Time Series Forecasting Using Support Vector Machines.Neurocomputing,55(1–2),307-319.
  17. Kumar, M.,Thenmozhi, M.(2006).Forecasting Stock Index Movement: A Comparison of Support Vector Machines and Random Forest.The Ninth Indian Institute of Capital Markets Conference
  18. Lo, A. W.,Mamaysky, H.,Wang, J.(2000).Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation.Journal of Finance,55(4),1705-1765.
  19. Mandelbrot, B. B.,Wallis, J.(1968).Noah, Joseph and Operational Hydrology.Water Resources Research,4,909-918.
  20. Ren, N.,Zargham, M.,Rahimi, S.(2006).A Decision Tree-Based Classification Approach to Rule Extraction for Security Analysis.International Journal of Information Technology and Decision Making,5(1),227-240.
  21. Richards, A.(2005).Big Fish in Small Ponds: The Trading Behavior and Price Impact of Foreign Investors in Asian Emerging Equity Markets.Journal of Financial and Quantitative Analysis,40(1),1-27.
  22. Schwertman, N. C.,de Silva, R.(2007).Identifying Outliers with Sequential Fences.Computational Statistics and Data Analysis,51,3800-3810.
  23. Sen, J.,Chaudhuri, T.(2017).A Robust Predictive Model for Stock Price Forecasting.The 5th International Conference on Business Analytics and Intelligence
  24. Shannon, C. E. (1948), “A Mathematical Theory of Communication,” Bell System Technical Journal, 27(3), 379–423; 623–656.
  25. Simon, D. P.,Wiggins, R. A.(2001).S&P Futures Returns and Contrary Sentiment Indicators.Journal of Futures Markets,21(5),447-462.
  26. Sortino, F. A.,van der Meer, R.(1991).Downside Risk.The Journal of Portfolio Management,17(4),27-31.
  27. Sortino, F. A.,van der Meer, R.,Plantinga, A.(1999).The Dutch Triangle.The Journal of Portfolio Management,26(1),50-57.
被引用次数
  1. (2024)。應用機器學習於鈦與鎂異種金屬銲接參數最佳化。品質學報,31(1),27-44。