题名

Improving Standard Moment Estimators of Beta Random Variables

并列篇名

改進Beta隨機變數之標準動差估計式

作者

李瑞祥(Ray-Shine Lee)

关键词

Beta distribution ; The method of moments ; Maximum likelihood method ; Jackknife estimator ; Beta分佈 ; 動差法 ; 最大概似法 ; Jackknife估計式

期刊名称

經濟論文

卷期/出版年月

47卷4期(2019 / 12 / 01)

页次

547 - 570

内容语文

英文

中文摘要

The beta distribution of the first kind, including two shape parameters, is a flexible curve specification in studying the classical moment method of statistical principles. The research of this paper, originating with a need similar to that in econometrics, further finds a sequence of explicit high-order moment estimators for the beta distribution. In addition to the trials of weighting different moment estimators, this research also examines a deserving-emphasis condition for estimating the classic four-parameter beta distribution, and permitting moment-equation substitution.

英文摘要

第一類型貝塔分佈,包括兩個形狀參數,是學習統計學原理中古典動差方法的一種易於伸縮曲線設定。本文的研究源自計量經濟學之相似需要,進一步發現貝塔分佈具有一系列外顯高階動差估計式。除了對不同估計式進行加權試驗外,這項研究還考察了一個值得重視的情況,估計經典的四參數貝塔分佈,並允許動差方程替換。

主题分类 社會科學 > 經濟學
参考文献
  1. Chang, S.-K.(2011).A Computationally Practical Simulation Estimation for Dynamic Panel Tobit Models.Academia Economic Papers,39,1-32.
    連結:
  2. Chang, S.-K.(2011).A Computationally Practical Simulation Estimation for Dynamic Panel Tobit Models.Academia Economic Papers,39,1-32.
    連結:
  3. Andrews, D. W. K.(2000).Inconsistency of the Bootstrap When a Parameter Is on the Bound- ary of the Parameter Space.Econometrica,68,399-405.
  4. Carnahan, J. V.(1989).Maximum Likelihood Estimation for the 4-Parameter Beta Distribu- tion.Communications in Statistics – Simulation and Computation,18,513-536.
  5. Carrasco, M.,Florens, J.-P.(2014).On the Asymptotic Efficiency of GMM.Econometric Theory,30,372-406.
  6. Chen, L.-Y.,Lee, S.(2018).Exact Computation of GMM Estimators for Instrumental Variable Quantile Regression Models.Journal of Applied Econometrics,33,553-567.
  7. Cottrell, A.,Lucchetti, R.(2017).Gretl Users Guide.Hong Kong:Samurai Media Limited.
  8. Cramér, H. (1946), Mathematical Methods of Statistics, Princeton, NJ: Princeton University Press.
  9. Cribari-Neto, F.,Vasconcellos, K. L.(2002).Nearly Unbiased Maximum Likelihood Esti- mation for the Beta Distribution.Journal of Statistical Computation and Simulation,72,107-118.
  10. Efron, B.(1981).Nonparametric Estimates of Standard Error: The Jackknife, the Bootstrap and Other Methods.Biometrika,68,589-599.
  11. Gradshteyn, I. S.,Ryzhik, I. M.(2007).Tables of Integrals, Series, and Products.New York:Academic Press.
  12. Greene, W. H.(2017).Econometric Analysis.New York:Pearson Education.
  13. Hall, A. R.(2005).Generalized Method of Moments.New York:Oxford University Press.
  14. Hansen, L. P.(1982).Large Sample Properties of Generalized Method of Moments Estimators.Econometrica,50,1029-1054.
  15. Johnson, N. L.,Kotz, S.,Balakrishnan, N.(1995).Continuous Univariate Distributions.New York:John Wiley & Sons.
  16. Lemonte, A. J.(2011).Improved Point Estimation for the Kumaraswamy Distribution.Journal of Statistical Computation and Simulation,81,1971-1982.
  17. Maddala, G. S.(1983).Limited-Dependent and Qualitative Variables in Econometrics.New York:Cambridge University Press.
  18. McDonald, J. B.(1984).Some Generalized Functions for the Size Distribution of Income.Econometrica,52,647-663.
  19. Miller, R. G.(1974).The Jackknife – A Review.Biometrika,61,1-15.
  20. Olive, D. J.(2014).Statistical Theory and Inference.New York:Springer.
  21. Pearson, K. (1895), "Contributions to the Mathematical Theory of Evolution II, Skew Variation in Homogeneous Material," Philosophical Transactions of the Royal Society of London, 99 186 (Part I), 343-424.
  22. Rao, C. R.(1973).Linear Statistical Inference and Its Applications.New York:John Wiley & Sons.
  23. Shao, J.,Tu, D.(1995).The Jackknife and Bootstrap.New York:Springer-Verlag.
  24. Wooldridge, J. M.(2001).Applications of Generalized Method of Moments Estimation.Journal of Economic Perspectives,15,87-100.