题名

即時認定台灣的景氣轉折

并列篇名

Identifying Taiwan's Business Cycle Turning Points in Real Time

DOI

10.6277/TER.202109_49(3).0001

作者

朱浩榜(Hao-Pang Chu)

关键词

景氣循環 ; 景氣轉折 ; 機器學習 ; business cycle ; turning points ; machine learning

期刊名称

經濟論文叢刊

卷期/出版年月

49卷3期(2021 / 09 / 01)

页次

335 - 370

内容语文

繁體中文

中文摘要

在景氣認定上,往往需要蒐集足夠的資料、觀察夠長的時間,才得以確認景氣是否發生轉折。因此,發布認定結果的時點往往較實際轉折落後一段頗長的時間,各界難以即時得知當前的景氣狀態。本文參照Giusto and Piger(2017),應用機器學習上的學習式向量量化(Learning Vector Quantization, LVQ)方法,並設定若干假設及判定規則,即時認定台灣2000年以後的景氣循環。LVQ方法毋須對景氣循環的資料生成過程(data generating process)做任何假設,適合台灣在不同經濟發展階段下,景氣循環亦具有不同特性之情形。實證結果發現,藉由LVQ方法,可大幅縮短景氣轉折發生後所需的認定時間,且得到的轉折時點與國發會相近,故應有助在正式發布認定結果前,得到關於當前景氣狀態的參考資訊。

英文摘要

The official chronologies of business cycle turning points often suffer from a substantial time lag, which makes it difficult for economic agents to identify the starting point of a new business cycle phase. Following Giusto and Piger (2017), this paper identifies Taiwan's business cycle turning points after 2000s in real time using a machine learning algorithm known as Learning Vector Quantization (LVQ). Since LVQ does not rely on the specification of the business cycle's data generating process, it is suitable for addressing distinctive features in Taiwan's business cycles at different stages of economic development. Utilizing an LVQ algorithm, business cycle turning points can be identified quickly with a lag of between seven and ten months, considerably better than the official's 12 and 51 months. Furthermore, the empirical results suggest that the turning points identified by LVQ and the official method are quite consistent, and their differences are within a three-month range. In contrast, the turning points estimated by Markov-switching models are significantly different from the official turning points.

主题分类 社會科學 > 經濟學
参考文献
  1. Chen, Shyh-Wei,Lin, Jin-Lung(2000).Modelling Business Cycles in Taiwan with Time-Varying Markov-Switching Models.Academia Economic Papers,28(1),17-42.
    連結:
  2. Chen, Shyh-Wei,Lin, Jin-Lung(2000).Identifying Turning Points and Business Cycles in Taiwan: A Multivariate Dynamic Markov-Switching Factor Model Approach.Academia Economic Papers,28(3),289-320.
    連結:
  3. 陳宜廷, Yi-Ting,謝志昇, Chih-Sheng(2006)。台灣實質國民生產毛額年成長率的狀態變化意涵。經濟論文,34(1),41-91。
    連結:
  4. 陳淑玲, Shu-Ling,黃裕烈, Yu-Lieh(2015)。台灣景氣基準循環指數之檢討與改進。臺灣經濟預測與政策,46(1),1-42。
    連結:
  5. 劉瑞文, Ruey-Wan(2007)。由靜態到動態之依時拆分 — 台灣工業部門實質 GDP 之按月推估。臺灣經濟預測與政策,38(1),75-125。
    連結:
  6. 蕭宇翔, Yu-Hsiang,林依伶, Yi-Ling(2020)。台灣景氣狀態之預測。臺灣經濟預測與政策,51(1),1-56。
    連結:
  7. 饒秀華, Hsiu-Hua,林修葳, Hsiou-Wei W.,黎明淵, Ming-Yuan L.(2001)。藉由分期 MS 模型分析台灣經濟景氣狀態。經濟論文,29(3),297-319。
    連結:
  8. Berge, Travis J.(2015).Predicting Recessions with Leading Indicators: Model Averaging and Selection over the Business Cycle.Journal of Forecasting,34(6),455-471.
  9. Bry, Gerhard,Boschan, Charlotte(1971).Cyclical Analysis of Time Series: Selected Procedures and Computer Programs.New York:National Bureau of Economic Research.
  10. Burns, Arthur F. and Wesley C. Mitchell (1946), Measuring Business Cycles, New York: National Bureau of Economic Research.
  11. Chauvet, Marcelle(1998).An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching.International Economic Review,39(4),969-996.
  12. Chauvet, Marcelle,Hamilton, James D.(2006).Dating Business Cycle Turning Points.Nonlinear Time Series Analysis of Business Cycles,Amsterdam:
  13. Chauvet, Marcelle,Piger, Jeremy(2008).A Comparison of the Real-Time Performance of Business Cycle Dating Methods.Journal of Business and Economic Statistics,26(1),42-49.
  14. Chow, Gregory C.,Lin, An-Loh(1971).Best Linear Unbiased Interpolation, Distribution and Extrapolation of Time Series by Related Series.Review of Economics and Statistics,53(4),372-375.
  15. Döpke, Jörg,Fritsche, Ulrich,Pierdzioch, Christian(2017).Predicting Recessions with Boosted Regression Trees.International Journal of Forecasting,33(4),745-759.
  16. Estrella, Arturo,Mishkin, Frederic S.(1998).Predicting US Recessions: Financial Variables as Leading Indicators.Review of Economics and Statistics,80(1),45-61.
  17. Fossati, Sebastian(2016).Dating US Business Cycles with Macro Factors.Studies in Nonlinear Dynamics and Econometrics,20(5),529-547.
  18. Giusto, Andrea,Piger, Jeremy(2017).Identifying Business Cycle Turning Points in Real Time with Vector Quantization.International Journal of Forecasting,33(1),174-184.
  19. Hamilton, James D.(2011).Calling Recessions in Real Time.International Journal of Forecasting,27(4),1006-1026.
  20. Hamilton, James D.(1989).A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle.Econometrica,57(2),357-384.
  21. Harding, Don,Pagan, Adrian(2006).Synchronization of Cycles.Journal of Econometrics,132(1),59-79.
  22. Harding, Don,Pagan, Adrian(2002).Dissecting the Cycle: A Methodological Investigation.Journal of Monetary Economics,49(2),365-381.
  23. Kauppi, Heikki,Saikkonen, Pentti(2008).Predicting US Recessions with Dynamic Binary Response Models.Review of Economics and Statistics,90(4),777-791.
  24. Kohonen, Teuvo(2001).Self-Organizing Maps.Berlin:Springer-Verlag.
  25. Kohonen, Teuvo(1990).The Self-Organizing Map.Proceedings of the IEEE,78(9),1464-1480.
  26. Lucas, Robert E.(1995).Understanding Business Cycles.Essential Readings in Economics,London:
  27. Nilsson, Ronny,Gyomai, Gyorgy(2011).OECD Statistics Working PapersOECD Statistics Working Papers,未出版
  28. Proietti, Tommaso(2005).New Algorithms for Dating the Business Cycle.Computational Statistics and Data Analysis,49(2),477-498.
  29. Rudebusch, Glenn D.,Williams, John C.(2009).Forecasting Recessions: the Puzzle of the Enduring Power of the Yield Curve.Journal of Business and Economic Statistics,27(4),492-503.
  30. Stock, James H.(ed.),Watson, Mark W.(ed.)(1993).Business Cycles, Indicators and Forecasting.Chicago:University of Chicago Press.
  31. Stock, James H.,Watson, Mark W.(2014).Estimating Turning Points Using Large Data Sets.Journal of Econometrics,178(2),368-381.
  32. 林向愷, Kenneth S.,黃裕烈, Yu-Lieh,管中閔, Chung-Ming(1998)。景氣循環轉折點認定與經濟成長率預測。經濟論文叢刊,26(4),431-457。
  33. 徐士勛, Shih-Hsun,管中閔, Chung-Ming(2001)。九零年代台灣的景氣循環: 馬可夫轉換模型與紀卜斯抽樣法的應用。人文及社會科學集刊,13(5),515-540。
  34. 徐之強, Chih-Chiang,黃裕烈, Yu-Lieh(2005)。行政院經濟建設委員會委託研究報告行政院經濟建設委員會委託研究報告,Republic of China (Taiwan):行政院經濟建設委員會=Council of Economic Planning and Development, Executive Yuan。
  35. 徐志宏, Jhih-Hong(2012)。台灣第12次景氣循環谷底之認定。經濟研究,12,1-44。
  36. 徐志宏, Jhih-Hong,周大森, Ta-Sheng(2010)。近期台灣景氣循環峰谷之認定。經濟研究,10,1-33。
  37. 陳惠薇, Hui-Wei(2009)。我國第11次景氣循環高峰之認定與研析。經濟研究,9,1-26。
  38. 陳劍虹, Chien-Hung(2015)。近年台灣經濟情勢回顧 — 第13次景氣循環谷底初探。經濟研究,15,1-26。
  39. 黃月盈, Yueh-Ying(2012)。建構景氣指標方法之研析。經濟研究,12,45-71。
  40. 劉欣姿, Hsin-Tzu(2019)。台灣第14次景氣循環谷底認定之研究。經濟研究,19,140-175。
被引用次数
  1. (2024)。新冠疫情前後兩岸與美國股市變化之政經分析。中國地方自治,77(6),21-56。