题名

以高頻物價數據進行通膨預測

并列篇名

Inflation Nowcasting Using High Frequency Price Data

DOI

10.6277/TER.202109_49(3).0002

作者

蕭宇翔(Yu-Hsiang Hsiao);繆維正(Evan Weicheng Miao)

关键词

即時預報 ; 通膨預測 ; 分解預測 ; 組合預測 ; nowcasting ; inflation forecasting ; disaggregate forecasts ; combining forecasts

期刊名称

經濟論文叢刊

卷期/出版年月

49卷3期(2021 / 09 / 01)

页次

371 - 414

内容语文

繁體中文

中文摘要

食物與能源價格是影響台灣通膨率波動的重要因素,若能即時掌握兩者價格變化應能有助預測當月通膨率。本文從農產品批發市場交易行情站、畜產行情資訊網、漁產品全球資訊網、中油公司油品行銷事業部等相關網站,擷取蔬菜、水果、毛豬、家禽、漁產品與汽油之每日批發或零售價格,並運用此高頻資料對台灣消費者物價指數(consumer price index,CPI)年增率進行即時預報(nowcasting)。實證發現,運用主計總處公布上月CPI統計時可取得的即時價格資訊,即時預報模型的樣本外誤差均方根(root mean square error,RMSE)約較AR模型低34-44%,且隨著月中資料的更新,即時預報模型的預測誤差亦進一步降低。

英文摘要

Food and energy prices are the most important determinants of inflation fluctuations in Taiwan, and their high frequency data are anticipated to be effective predictors for real time CPI. We collect the online, daily, retail and wholesale prices of vegetables, fruit, pork, poultry, fish, and gasoline from official websites. Empirical results demonstrate that with the high frequency price data available on the DGBAS release day for the last month's CPI, the Root Mean Square Error (RMSE) of the nowcasting models are lower than the AR model by 34-44%. Moreover, with the updating of the data through the month, the nowcasting errors decline further. Incorporating food and energy high frequency price data would enable policymakers to predict the real time CPI change amid unusual weather conditions (e.g., typhoons, heaven rain) or amid an unusual international crude oil price fluctuation.

主题分类 社會科學 > 經濟學
参考文献
  1. 陳宜廷, Yi-Ting,徐士勛, Shih-Hsun,劉瑞文, Ruey-Wan,莊額嘉, O-Chia(2011)。經濟成長率預測之評估與更新。經濟論文叢刊,39(1),1-44。
    連結:
  2. Aiolfi, Marco,Capistrán, Carlos,Timmermann, Allan(2011).Forecast Combination.Oxford Handbook of Economic Forecasting,Oxford:
  3. Ang, Andrew,Bekaert, Geert,Wei, Min(2007).Do Macro Variables, Asset Markets, or Surveys Forecast Inflation Better?.Journal of Monetary Economics,54(4),1163-1212.
  4. Aparicio, Diego,Bertolotto, Manuel I.(2020).Forecasting Inflation with Online Prices.International Journal of Forecasting,36(2),232-247.
  5. Baffigi, Alberto,Golinelli, Roberto,Parigi, Giuseppe(2004).Bridge Models to Forecast the Euro Area GDP.International Journal of Forecasting,20(3),447-460.
  6. Banbura, Marta,Giannone, Domenico,Modugno, Michele,Reichlin, Lucrezia(2013).Now-Casting and the Real-Time Data Flow.Handbook of Economic Forecasting,Amsterdam:
  7. Benalal, Nicholai,del Hoyo, Juan Luis Diaz,Landau, Bettina,Roma, Moreno,Skudelny, Frauke(2004).ECB Working PaperECB Working Paper,未出版
  8. Bermingham, Colin,D’Agostino, Antonello(2011).ECB Working PaperECB Working Paper,未出版
  9. Breitung, JÖrg,Roling, Christoph(2015).Forecasting Inflation Rates Using Daily Data: A Nonparametric MIDAS Approach.Journal of Forecasting,34(7),588-603.
  10. Bruneau, Catherine,De Bandt, Olivier,Flageollet, Alexis,Michaux, Emmanuel(2007).Forecasting Inflation Using Economic Indicators: The Case of France.Journal of Forecasting,26(1),1-22.
  11. Cavallo, Alberto(2017).Are Online and Offline Prices Similar? Evidence from Large Multi-channel Retailers.American Economic Review,107(1),283-303.
  12. Cavallo, Alberto,Rigobon, Roberto(2016).The Billion Prices Project: Using Online Prices for Measurement and Research.Journal of Economic Perspectives,30(2),151-178.
  13. Chikamatsu, Kyosuke,Hirakata, Naohisa,Kido, Yosuke,Otaka, Kazuki(2018).Bank of Japan Working Paper SeriesBank of Japan Working Paper Series,未出版
  14. Diron, Marie(2008).Short-term Forecasts of Euro Area real GDP Growth. An Assessment of Real-time Performance Based on Vintage Data.Journal of Forecasting,27(5),371-390.
  15. Elliott, Graham,Gargano, Antonio,Timmermann, Allan(2013).Complete Subset Regressions.Journal of Econometrics,177(2),357-373.
  16. Elliott, Graham,Gargano, Antonio,Timmermann, Allan(2015).Complete Subset Regressions with Large-dimensional Sets of Predictors.Journal of Economic Dynamics and Control,54,86-110.
  17. Espasa, Antoni,Senra, Eva,Albacete, Rebeca(2002).Forecasting Inflation in the European Monetary Union: A Disaggregated Approach by Countries and by Sectors.European Journal of Finance,8(4),402-421.
  18. Faust, Jon,Wright, Jonathan H.(2013).Forecasting Inflation.Handbook of Economic Forecasting,Amsterdam:
  19. Foroni, Claudia,Marcellino, Massimiliano(2013).Norges Bank Working PaperNorges Bank Working Paper,未出版
  20. Funke, Michael,Mehrotra, Aaron,Yu, Hao(2015).Tracking Chinese CPI Inflation in Real Time.Empirical Economics,48(4),1619-1641.
  21. Garcia, Márcio G. P.,Medeiros, Marcelo C.,Vasconcelos, Gabriel F. R.(2017).Real-time Inflation Forecasting with High-dimensional Models: The Case of Brazil.International Journal of Forecasting,33(3),679-693.
  22. Ghysels, Eric, Pedro Santa-Clara, and Rossen Valkanov (2004), “The MIDAS Touch: Mixed Data Sampling Regression Models,” Working Paper, University of North Carolina.
  23. Hendry, David F.,Hubrich, Kirstin(2011).Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate.Journal of Business and Economic Statistics,29(2),216-227.
  24. Hoekstra, Rutger,Bosch, Olav Ten,Harteveld, Frank(2012).Automated Data Collection from Web Sources for Official Statistics: First Experiences.Journal of the International Association for Official Statistics,28(3–4),99-111.
  25. Hubrich, Kirstin(2005).Forecasting Euro Area Inflation: Does Aggregating Forecasts by HICP Component Improve Forecast Accuracy?.International Journal of Forecasting,21(1),119-136.
  26. Hull, Isaiah,Löf, Marten,Tibblin, Markus(2017).Price Information Collected Online and Short-term Inflation Forecasts.IFC-Bank Indonesia Satellite Seminar on “Big Data” at the ISI Regional Statistics Conference 2017
  27. Knotek, Edward S.,Zaman, Saeed(2017).Nowcasting U.S. Headline and Core Inflation.Journal of Money, Credit and Banking,49(5),931-968.
  28. Kotchoni, Rachidi,Leroux, Maxime,Stevanovic, Dalibor(2019).Macroeconomic Forecast Accuracy in a Data-rich Environment.Journal of Applied Econometrics,34(7),1050-1072.
  29. Lütkepohl, Helmut(1987).Forecasting Aggregated Vector ARMA Processes.Berlin:Springer.
  30. Marcellino, Massimiliano,Stock, James H.,Watson, Mark W.(2003).Macroeconomic Forecasting in the Euro Area: Country Specific versus Area-wide Information.European Economic Review,47(1),1-18.
  31. Modugno, Michele(2013).Now-Casting Inflation Using High Frequency Data.International Journal of Forecasting,29(4),664-675.
  32. Monteforte, Libero,Moretti, Gianluca(2013).Real-Time Forecasts of Inflation: The Role of Financial Variables.Journal of Forecasting,32(1),51-61.
  33. Moser, Gabriel,Rumler, Fabio,Scharler, Johann(2007).Forecasting Austrian Inflation.Economic Modelling,24(3),470-480.
  34. Peach, Richard,Rich, Robert,Linder, M. Henry(2013).The Parts Are More Than the Whole: Separating Goods and Services to Predict Core Inflation.Current Issues in Economics and Finance, Federal Reserve Bank of New York,19(7),1-8.
  35. Powell, Ben,Nason, Guy,Elliott, Duncan,Mayhew, Matthew,Davies, Jennifer,Winton, Joe(2018).Tracking and Modelling Prices using Webscraped Price Microdata: towards Automated Daily Consumer Price Index Forecasting.Journal of the Royal Statistical Society: Series A (Statistics in Society),181(3),737-756.
  36. Zeng, Jing(2017).Forecasting Aggregates with Disaggregate Variables: Does Boosting Help to Select the Most Informative Predictors?.Journal of Forecasting,36(1),74-90.
  37. 張慈恬, Ci-Tian(2011)。國立政治大學=National Chengchi Univerity。
  38. 陳巧芸, Chiao-Yun,許榮洲, Jung-Chou(2018)。物價指數統計作業之變革與精進。主計月刊,751,10-16。
  39. 陳佩玗, Pei-Yu(2013)。台灣地區短期通貨膨脹率之預測。中央銀行季刊,35(1),63-90。
  40. 經濟部 (2012), “電價合理化方案 — 合理價格、節能減碳、照顧民生,” URL: https://www.tpvia.org.tw/upload/1010412%20。 (Ministry of Economic Affairs (2012), “Electricity Price Rationalization Scheme - Fair Pricing, Energy Conservation and Caring for People,” URL: http://www.tpvia.org.tw/upload/1010412\%20.)
  41. 葉盛 (2019), “應用官方網站資料預測台灣短期通膨率,” 未出版論文, 中央銀行經濟研究處。 (Yeh, Sheng (2019), “Using Official Website Data to Predict Taiwan’s Short-term Inflation Rate,” Working Paper, Department of Economic Research, Central Bank of the Republic of China (Taiwan).)