题名

Correlation with Forwarding

并列篇名

關聯性與訊息轉傳

DOI

10.6277/TER.202310_51(4).0001

作者

Chun-Ting Chen(陳俊廷)

关键词

pre-play communication ; correlated equilibrium ; forwarding ; 賽前溝通 ; 關聯性均衡 ; 轉傳

期刊名称

經濟論文叢刊

卷期/出版年月

51卷4期(2023 / 10 / 01)

页次

429 - 462

内容语文

英文;繁體中文

中文摘要

In this paper, I consider three-player complete information games augmented with pre-play communication. Players can privately communicate with others, but not through a mediator. I implement correlated equilibria by allowing players to authenticate their messages and forward the authenticated messages during communication. Authenticated messages, such as letters with signatures, cannot be forged but sent or received by players. With authenticated messages, I show that if a game G has an α as a point in the convex hull of Nash equilibrium, then any correlated equilibrium distribution in G, which has rational coefficients and gives each player a strictly higher payoff than what α does, can be implemented via a pre-play communication. The proposed communication protocol does not require perfect public recording, as has been used in Bárány (1992), and does not publicly expose players' private messages at any stage during communication.

英文摘要

我考慮三人完全資訊賽局的賽前溝通。賽前溝通可以讓玩家們在賽局開始前,與其他玩家互相傳遞私有訊息。當玩家可以轉傳訊息並驗證訊息時,我證明關聯性均衡可以被賽前溝通實現。可驗證的訊息,比如簽了名的信件,可以被傳遞但不能被偽造。當訊息可以被驗證時,我證明:如果一個賽局具有在其Nash均衡凸包上的點α,那麼,對於任何一個此賽局的關聯性均衡,若其係數皆為有理數且給予任何玩家嚴格大於在α下的報酬,此關聯性均衡就可以被賽前溝通實現。此文章所提出的賽前溝通過程,不需要可以將訊息完美記錄的物件(Bárány,1992),且在溝通過程中的任何階段,玩家的私有訊息都不會被公開。

主题分类 社會科學 > 經濟學
参考文献
  1. Aumann, Robert J.(1974).Subjectivity and Correlation in RandomizedStrategies.Journal of Mathematical Economics,1(1),67-96.
  2. Aumann, Robert J.,Maschler, Michael(1995).Repeated Games With Incomplete Information.Cambridge, MA:MIT Press.
  3. Bárány, Imre(1992).Fair Distribution Protocols or How The Players Replace Fortune.Mathematics of Operations Research,17,327-340.
  4. Ben-Or, Michael,Wigderson, Avi(1988).Completeness Theorems forNon-cryptographic Fault-tolerant Distributed Computation.Proceedings of the 20th Annual ACM Symposium on Theory of Computing,New York:
  5. Ben-Porath, Elchanan(1998).Correlation without Mediation: Expandingthe Set of Equilibrium Outcomes by ‘Cheap’ Pre-play Procedures.Journal of Economic Theory,80(1),108-122.
  6. Ben-Porath, Elchanan(2003).Cheap Talk in Games with Incomplete Information.Journal of Economic Theory,108(1),45-71.
  7. Dodis, Yevgeniy,Halevi, Shai,Rabin, Tal(2000).A Cryptographic Solution to a Game Theoretic Problem.Proceedings of the 20th AnnualInternational Cryptology Conference on Advances in Cryptology,London:
  8. Forges, Francoise(1990).Universal Mechanisms.Econometrica,58(6),1341-1364.
  9. Forges, Françoise(1986).An Approach to Communication Equilibria.Econometrica,54(6),1375-1385.
  10. Gerardi, Dino(2004).Unmediated Communication in Games with Complete and Incomplete Information.Journal of Economic Theory,114(1),104-131.
  11. Gossner, Olivier,Vieille, Nicolas(2001).Repeated Communicationthrough The Mechanism And.International Journal of Game Theory,30(1),41-60.
  12. Heller, Yuval(2010).Minority-proof Cheap-talk Protocol.Games and Economic Behavior,69(2),394-400.
  13. Heller, Yuval,Solan, Eilon,Tomala, Tristan(2012).Communication,Correlation and Cheap-talk in Games with Public Information.Gamesand Economic Behavior,74(1),222-234.
  14. Lehrer, Ehud(1996).Mediated Talk.International Journal of Game Theory,25(2),177-188.
  15. Lehrer, Ehud,Sorin, Sylvain(1997).One-shot Public Mediated Talk.Games and Economic Behavior,20(2),131-148.
  16. Meyers, Robert A.(ed.)(2009).Encyclopedia of Complexity and Systems Science.New York:Springer New York.
  17. Myerson, Roger B.(2004).Game Theory.Cambridge, MA:Harvard University Press.
  18. Shamir, Adi(1979).How to Share A Secret.Communications of the ACM,22(11),612-613.
  19. Teague, Vanessa(2008).Problems With Coordination in Two-Player Games:Comment on “Computational Complexity and Communication.Econometrica,76(6),1559-1564.
  20. Urbano, Amparo,Vila, Jose E.(2002).Computational Complexity andCommunication: Coordination in Two-Player Games.Econometrica,70(5),1893-1927.
  21. Vida, Péter,Azacis, Helmuts(2013).A Detail-free Mediator.Gamesand Economic Behavior,81,101-115.
  22. Vijay Krishna, R.(2007).Communication in Games of Incomplete Information: Two Players.Journal of Economic Theory,132(1),584-592.