题名

規律折扣數列與高齡死亡率

并列篇名

Using Regular Discount Sequence to Model Elderly Mortality

DOI

10.6191/jps.2011.6

作者

王信忠(Hsin-Chung Wang);余清祥(Jack C. Yue)

关键词

吃角子老虎問題 ; 布朗運動 ; 長壽風險 ; 蒙地卡羅模擬 ; 區塊拔靴法 ; Bandit Problem ; Brownian Motion ; Longevity Risk ; Monte Carlo Simulation ; Block Bootstrap

期刊名称

人口學刊

卷期/出版年月

43期(2011 / 12 / 01)

页次

37 - 70

内容语文

繁體中文

中文摘要

自二十世紀中葉以來,人類平均壽命屢創歷史紀錄,高齡(65歲以上)人口在許多國家已經或即將超過全國人口的五分之一,老年族群成為二十一世紀的熱門研究議題。然而,由於高齡人口資料在1990年代以後才有較完整紀錄,對於何種高齡死亡率模型為較佳,至今仍無定論。本文引入吃角子老虎問題(Bandit Problem)的規律折扣數列(Regular Discount Sequence),用來描述老年人的平均餘命變化,以及預測未來的高齡死亡率。許多常用的死亡率模型,例如:Gompertz法則、均勻死亡假設(Uniform Distribution of Death)、定死力假設(Constant Force)、以及雙曲線假設(Hyperbolic)等,都滿足規律折扣數列的條件。除了理論推導之外,我們採用美國加州大學柏克萊分校(University of California, Berkeley)的Human Mortality Database(HMD)資料庫,包括臺灣、日本及美國的死亡率資料,驗證規律折扣數列,三個國家的生存數與平均餘命均大致符合折扣數列的假設。另外,我們也使用布朗運動(Brownian Motion)隨機微分方程式,建立折扣數列模型,用來預測未來的高齡人口死亡率,電腦模擬顯示無論是數列比值或是死亡率預測,折扣數列模型都有不錯的結果,亦即本文提出的模型可用於預測高齡死亡率。

英文摘要

Life expectancies of the human male and female have been increasing significantly since the turn of the 20th century, and the trend is expected to continue. The study of elderly mortality has thus become a favorite research topic. However, because there were not enough elderly data before 1990, there is still no conclusion about which mortality model is appropriate for describing elderly mortality. In this study, we modify the regular discount sequence in the Bandit Problem and use it to describe elderly mortality. We found that many frequently used mortality models, such as the Gompertz Law, and famous mortality assumptions (Uniform Distribution of Death, Constant Force, and Hyperbolic assumption) all satisfy the requirement of a regular discount sequence.We also use empirical data from the HMD (Human Mortality Database from University of California, Berkeley), including data from Japan, the US, and Taiwan, to evaluate the proposed approach. The discount sequences of life expectancy and surviving number ratio do satisfy the regularity condition. In addition, we use the Brownian Motion Stochastic Differential Equation to model the discount sequence. Using this model, we predict the future mortality rates and life expectancy. The simulation study shows some promising results.

主题分类 社會科學 > 社會學
参考文献
  1. 郭孟坤、余清祥(2007)。電腦模擬、隨機方法與人口推估的實證研究。人口學刊,36,67-98。
    連結:
  2. 陳政勳、余清祥(2010)。小區域人口推估研究:臺北市、雲嘉兩縣、澎湖縣的實證分析。人口學刊,41,153-183。
    連結:
  3. 行政院經濟建設委員會人力規劃處(2009)2009 年世界人口重要指標。http://www.cepd.gov.tw/dn.aspx?uid=7230(取用日期:2011 年10 月25 日)。
  4. 中華民國內政部(2011)中華民國九十九年內政部統計年報。臺北。
  5. 行政院經濟建設委員會(2008)中華民國臺灣97 年至145 年人口推計。臺北。
  6. 中華民國內政部統計處(2011)內政國際指標:30.主要國家特定年齡平均餘命。http://www.moi.gov.tw/stat/national/j030.xls(取用日期:2011 年10 月25 日)。
  7. Human Mortality Database (HMD). 2011. http://www.mortality.org (Date visited: December 18, 2010).
  8. Berry, D. A.,Fristedt, B.(1985).Bandit Problems.London:Chapman and Hall.
  9. Berry, D. A.,Fristedt, B.(1979).Bernoulli One-Armed Bandits-Arbitrary Discount Sequences.The Annals of Statistics,7(5),1086-1105.
  10. Bühlmann, P.(2002).Bootstraps for Time Series.Statistical Science,17(1),52-72.
  11. Cairns, A. J. G.,Blake, D.,Dowd, K.(2006).A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration.The Journal of Risk and Insurance,73(4),687-718.
  12. Cairns, A. J. G.,Blake, D.,Dowd, K.(2006).Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk.ASTIN Bulletin,36(1),79-120.
  13. Chen, H.,Cox, S. H.(2009).Modeling Mortality with Jumps: Applications to Mortality Securitization.The Journal of Risk and Insurance,76(3),727-751.
  14. Coale, A. J.,Kisker, E. E.(1990).Defects in Data on Old-Age Mortality in the United States: New Procedures for Calculating Mortality Schedules and Life Tables at the Highest Ages.Asian and Pacific Population Forum,4(1),1-32.
  15. Continuous Mortality Investigation Bureau=CMIB(1999).Continuous Mortality Investigation ReportsContinuous Mortality Investigation Reports,未出版
  16. Hyndman, R. J.,Ullah, M. S.(2007).Robust Forecasting of Mortality and Fertility Rates: A Functional Data Approach.Computational Statistics&Data Analysis,51(10),4942-4956.
  17. Lee, R. D.,Carter, L. R.(1992).Modeling and Forecasting U.S. Mortality.Journal of the American Statistical Association,87,659-675.
  18. Lewis, E. B.(1982).Control of Body Segment Differentiation in Drosophila by the Bithorax Gene Complex.Embryonic Development, Part A: Genetics Aspects,New York:
  19. Ramsay, J. O.,Silverman, B. W.(2005).Functional Data Analysis.New York:Springer.
  20. Renshaw, A. E.,Haberman, S.(2006).A Cohort-Based Extension to the Lee-Carter Model for Mortality Reduction Factors.Insurance: Mathematics and Economics,38(3),556-570.
  21. Yang, S. S.,Yue, J. C.,Huang, H. C.(2010).Modeling Longevity Risks Using a Principal Component Approach: A Comparison with Existing Stochastic Mortality Models.InsuranceMathematics and Economics,46(1),254-270.
  22. Yue, J. C.(1999).Generalized Two-Stage Bandit Problem.Communications in Statistics: Theory and Methods,28(9),2261-2276.
  23. 余清祥、鄭和憲(2002)。基礎壽險數學。臺北:學富文化。
  24. 林麗芬、強燕明(2005)。碩士論文(碩士論文)。逢甲大學統計與精算研究所。
被引用次数
  1. 陳怡萱、余清祥、王信忠(2016)。高齡死亡率模型的探討。人口學刊,52,1-42。
  2. 劉議謙,宮可倫,李永琮(2019)。死亡率模型之比較:以臺灣資料為例。人口學刊,58,1-37。
  3. 吳明哲(2018)。以房養老市場投資需求因素之研究-新均衡理論與模糊分析階層程序法之應用。住宅學報,27(1),47-77。