英文摘要
|
Life expectancies of the human male and female have been increasing significantly since the turn of the 20th century, and the trend is expected to continue. The study of elderly mortality has thus become a favorite research topic. However, because there were not enough elderly data before 1990, there is still no conclusion about which mortality model is appropriate for describing elderly mortality. In this study, we modify the regular discount sequence in the Bandit Problem and use it to describe elderly mortality. We found that many frequently used mortality models, such as the Gompertz Law, and famous mortality assumptions (Uniform Distribution of Death, Constant Force, and Hyperbolic assumption) all satisfy the requirement of a regular discount sequence.We also use empirical data from the HMD (Human Mortality Database from University of California, Berkeley), including data from Japan, the US, and Taiwan, to evaluate the proposed approach. The discount sequences of life expectancy and surviving number ratio do satisfy the regularity condition. In addition, we use the Brownian Motion Stochastic Differential Equation to model the discount sequence. Using this model, we predict the future mortality rates and life expectancy. The simulation study shows some promising results.
|
参考文献
|
-
郭孟坤、余清祥(2007)。電腦模擬、隨機方法與人口推估的實證研究。人口學刊,36,67-98。
連結:
-
陳政勳、余清祥(2010)。小區域人口推估研究:臺北市、雲嘉兩縣、澎湖縣的實證分析。人口學刊,41,153-183。
連結:
-
行政院經濟建設委員會人力規劃處(2009)2009 年世界人口重要指標。http://www.cepd.gov.tw/dn.aspx?uid=7230(取用日期:2011 年10 月25 日)。
-
中華民國內政部(2011)中華民國九十九年內政部統計年報。臺北。
-
行政院經濟建設委員會(2008)中華民國臺灣97 年至145 年人口推計。臺北。
-
中華民國內政部統計處(2011)內政國際指標:30.主要國家特定年齡平均餘命。http://www.moi.gov.tw/stat/national/j030.xls(取用日期:2011 年10 月25 日)。
-
Human Mortality Database (HMD). 2011. http://www.mortality.org (Date visited: December 18, 2010).
-
Berry, D. A.,Fristedt, B.(1985).Bandit Problems.London:Chapman and Hall.
-
Berry, D. A.,Fristedt, B.(1979).Bernoulli One-Armed Bandits-Arbitrary Discount Sequences.The Annals of Statistics,7(5),1086-1105.
-
Bühlmann, P.(2002).Bootstraps for Time Series.Statistical Science,17(1),52-72.
-
Cairns, A. J. G.,Blake, D.,Dowd, K.(2006).A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration.The Journal of Risk and Insurance,73(4),687-718.
-
Cairns, A. J. G.,Blake, D.,Dowd, K.(2006).Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk.ASTIN Bulletin,36(1),79-120.
-
Chen, H.,Cox, S. H.(2009).Modeling Mortality with Jumps: Applications to Mortality Securitization.The Journal of Risk and Insurance,76(3),727-751.
-
Coale, A. J.,Kisker, E. E.(1990).Defects in Data on Old-Age Mortality in the United States: New Procedures for Calculating Mortality Schedules and Life Tables at the Highest Ages.Asian and Pacific Population Forum,4(1),1-32.
-
Continuous Mortality Investigation Bureau=CMIB(1999).Continuous Mortality Investigation ReportsContinuous Mortality Investigation Reports,未出版
-
Hyndman, R. J.,Ullah, M. S.(2007).Robust Forecasting of Mortality and Fertility Rates: A Functional Data Approach.Computational Statistics&Data Analysis,51(10),4942-4956.
-
Lee, R. D.,Carter, L. R.(1992).Modeling and Forecasting U.S. Mortality.Journal of the American Statistical Association,87,659-675.
-
Lewis, E. B.(1982).Control of Body Segment Differentiation in Drosophila by the Bithorax Gene Complex.Embryonic Development, Part A: Genetics Aspects,New York:
-
Ramsay, J. O.,Silverman, B. W.(2005).Functional Data Analysis.New York:Springer.
-
Renshaw, A. E.,Haberman, S.(2006).A Cohort-Based Extension to the Lee-Carter Model for Mortality Reduction Factors.Insurance: Mathematics and Economics,38(3),556-570.
-
Yang, S. S.,Yue, J. C.,Huang, H. C.(2010).Modeling Longevity Risks Using a Principal Component Approach: A Comparison with Existing Stochastic Mortality Models.InsuranceMathematics and Economics,46(1),254-270.
-
Yue, J. C.(1999).Generalized Two-Stage Bandit Problem.Communications in Statistics: Theory and Methods,28(9),2261-2276.
-
余清祥、鄭和憲(2002)。基礎壽險數學。臺北:學富文化。
-
林麗芬、強燕明(2005)。碩士論文(碩士論文)。逢甲大學統計與精算研究所。
|