题名

小區域死亡率推估之研究

并列篇名

A Simulation Study of Small Area Mortality Projection

DOI

10.6191/jps.2012.11

作者

王信忠(Hsin-Chung Wang);金碩(Shuoh Jin);余清祥(Jack C. Yue)

关键词

小區域死亡率推估 ; 人口老化 ; 修勻 ; 標準死亡比 ; 電腦模擬 ; small area mortality projection ; population aging ; smoothing methods ; standard mortality ratio ; computer simulation

期刊名称

人口學刊

卷期/出版年月

45期(2012 / 12 / 01)

页次

77 - 110

内容语文

繁體中文

中文摘要

臺灣人口結構漸趨老化,由於老年人使用較多醫療等社會資源,人口老化勢必牽動政府政策與資源分配,然而臺灣各縣市的人口老化速度不一(陳政勳、余清祥2010),因此有必要針對各地方特性發展適當的小區域人口推估方法。小區域推估面臨的問題可歸納為四個方向:「資料品質」、「地區人數」、「資料年數」與「推估年數」,資料品質有賴資料庫與制度的建立,而後三者則與過去資料與推估未來的變異程度有關。本文考量在上述後三個問題的影響下,探討修勻(graduation)相關方法是否可提高小區域死亡率推估的穩定性。本文使用屬於隨機推估的區塊拔靴法(block bootstrap),以電腦模擬評估推估結果,因為小區域人口數較少,本文也使用Whittaker及標準死亡比(standard mortality ratio)等修勻方法,降低因為地區人數較少引起的震盪。另外,小區域推估通常可用的資料時間較短,未來推估結果的震盪也較大,本文針對需要過去幾年資料,以及未來可推估年數等兩項因素進行研究,希冀結果可提供臺灣各地方政府的推估參考。除了電腦模擬外,本文也以實證分析檢驗修勻的成效,將修勻套用至臺南縣、臺東縣等縣市層級的死亡率。研究發現,修勻方法可降低小區域死亡率推估的震盪,如有過去十五年資料可獲得較可信的推估結果,而未來推估年數盡量不超過二十年;相對而言,與人口數比較,小區域與大區域的死亡率差異對修勻的影響較為有限。

英文摘要

The population size plays a very important role in statistical estimation, and it is difficult to derive a reliable estimate for small areas. The estimation is even more difficult if the geographic and social attributes within the small areas vary widely. However, although population aging is a common phenomenon globally, the problem is not the same for different countries. The aim of this study is to explore the mortality projection for small areas, with the consideration of the small area's distinguishing characteristics. In addition to data quality, the difficulties for small area population and mortality projection are threefold: population size, number of base years, and projection horizon. Smoothing methods can be applied to improve the stability and accuracy of small area estimation. In this study, the block bootstrap and smoothing methods are combined to project the mortality of small areas in Taiwan, using the cohort component method. We found that the smoothing methods can reduce the fluctuation of estimates and projections in general, and the improvement is especially noticeable for areas with smaller population sizes. To obtain a reliable mortality projection for small areas, we suggest using at least fifteen years of historical data for projection and a projection horizon of not more than twenty years. Also, the population size has a bigger influence than the discrepancy of mortality rates between small and large areas.

主题分类 社會科學 > 社會學
参考文献
  1. 郭孟坤、余清祥(2008)。電腦模擬、隨機方法與人口推估的實證研究。人口學刊,36,67-98。
    連結:
  2. 陳政勳、余清祥(2010)。小區域人口推估研究:臺北市、雲嘉兩縣、澎湖縣的實證分析。人口學刊,41,153-183。
    連結:
  3. Gompertz, B. 1825. “On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies.” Philosophical Transactions of the Royal Society of London 115: 513-583
  4. Henderson, R. 1924. “A New Method of Graduation.” Transactions of the Actuarial Society of America 25: 29-40
  5. Whittaker, E. T. 1922. “On a New Method of Graduation.” Proceedings of the Edinburgh Mathematical Society 41: 63-75
  6. Hyndman, R. J., H. Booth, and F. Yasmeen. 2011. “Coherent Mortality Forecasting: The Product-Ratio Method with Functional Time Series Models.” Working Paper 01/11. http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2011/wp1-11.pdf (Date visited: May 1, 2012)
  7. Henderson, R. 1925. “Further Remarks on Graduation.” Transactions of the Actuarial Society of America 26: 52-57
  8. Cannan, E. 1895. “The Probability of a Cessation of the Growth of Population in England and Wales During the Next Century.” The Economic Journal 5(20): 505-515
  9. Bates, A.(2008).The Development of a 'Postcode Best Fit' Methodology for Producing Population Estimates for Different Geographies.Population Trends,133,28-34.
  10. Cohen, J. E.(1986).Population Forecasts and Confidence Intervals for Sweden: A Comparison of Model-Based and Empirical Approaches.Demography,23(1),105-126.
  11. Copas, J. B.,Haberman, S.(1983).Non-Parametric Graduation Using Kernel Methods.Journal of the Institute of Actuaries,110,135-156.
  12. Denton, F. T.,Feaver, C. H.,Spencer, B. G.(2005).Time Series Analysis and Stochastic Forecasting: An Econometric Study of Mortality and Life Expectancy.Journal of Population Economics,18(2),203-227.
  13. Efron, B.(1979).Bootstrap Methods: Another Look at the Jackknife.The Annals of Statistics,7(1),1-26.
  14. Hall, P.(1985).Resampling a Coverage Pattern.Stochastic Processes and Their Applications,20(2),231-246.
  15. Künsch, H. R.(1989).The Jackknife and the Bootstrap for General Stationary Observations.The Annals of Statistics,17(3),1217-1241.
  16. Lee, R. D.,Carter, L. R.(1992).Modeling and Forecasting U.S. Mortality.Journal of the American Statistical Association,87(419),659-671.
  17. Lee, W. C.(2003).A Partial SMR Approach to Smoothing Age-Specific Rates.Annals of Epidemiology,13(2),89-99.
  18. Lewis, C. D.(1982).Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting.London:Butterworth Scientific.
  19. Ramlau-Hansen, H.(1983).The Choice of a Kernel Function in the Graduation of Counting Process Intensity.Scandinavian Actuarial Journal,1983(3),165-182.
  20. Rao, J. N. K.(2003).Small Area Estimation.Hoboken, NJ:John Wiley & Sons.
  21. Rogers, A.(1995).Multiregional Demography: Principles, Methods and Extensions.New York:John Wiley & Sons.
  22. Smith, S. K.(1987).Tests of Forecast Accuracy and Bias for County Population Projections.Journal of the American Statistical Association,82(400),991-1003.
  23. Smith, S. K.,Sincich, T.(1990).The Relationship Between the Length of the Base Period and Population Forecast Errors.Journal of the American Statistical Association,85(410),367-375.
  24. Ugarte, M. D.,Goicoa, T.,Militino, A. F.,Durbán, M.(2009).Spline Smoothing in Small Area Trend Estimation and Forecasting.Computational Statistics & Data Analysis,53(10),3616-3629.
  25. Yue, J. C.(2002).Oldest-Old Mortality Rates and the Gompertz Law: A Theoretical and Empirical Study Based on Four Countries.Journal of Population Studies,24,33-58.
  26. 余清祥(1997)。修勻:統計在保險的應用。臺北:雙葉書廊。
被引用次数
  1. 陳琇惠(2015)。國民年金保險被保險人時間序列之預測研究。社會政策與社會工作學刊,19(1),187-242。
  2. 陳琇惠(2017)。老農福利津貼制度永續性之初探。臺大社會工作學刊,35,1-44。
  3. 陳怡萱、余清祥、王信忠(2016)。高齡死亡率模型的探討。人口學刊,52,1-42。
  4. 陳譽騰,余清祥,王信忠(2021)。年輪變動比用於小區域人口推估的探討。人口學刊,63,99-133。
  5. 陳肇男,陳柏琪,許聖民,張靜貞,林幸君(2020)。臺灣縣市別長照需求之中長期推計及趨勢分析。人文及社會科學集刊,32(4),523-558。
  6. 劉議謙,宮可倫,李永琮(2019)。死亡率模型之比較:以臺灣資料為例。人口學刊,58,1-37。
  7. 余清祥、王信忠、王子瑜(2017)。臺灣原住民族死亡率暨生命表編撰研究。人口學刊,55,99-131。