题名

臺灣中型城市建築火災空間分析-以員林市為例

并列篇名

Spatial Analysis of Building Fire in Taiwan Middle Scale Urban Area: A Case Study of Yuanlin City

作者

陳彥仲(Yen-Jong Chen);吳舒凱(Shu-Kai Wu);盧鏡臣(Jing-Chein Lu)

关键词

都市火災 ; 空間自相關 ; 最小統計區 ; 核密度評估法 ; 迴歸分析 ; Urban fire disaster ; Spatial autocorrelation ; Minimum statistical area ; Kernel density assessment ; Regression analysis

期刊名称

規劃學報

卷期/出版年月

41卷1期(2023 / 06 / 01)

页次

35 - 59

内容语文

繁體中文;英文

中文摘要

在各類災害中,火災是都市地區常見的災害類型。相關文獻常以公共場所重大傷亡火災模擬或針對建築物使用類型、局部構造、設備等為尺度討論,並以空間量化統計及環境敘述呈現,偏重在於個別建築物案例的分析,並常以迴歸分析進行探討。然而,火災地點與其鄰近空間環境有高度相關,而於探討都市火災與鄰近社區環境,包含社會及經濟屬性時,必須考慮到社區之間並非同質的差異性,即社區異質性。爰而,火災空間異質性和空間自相關現象,在文獻中尚未備仔細研議,此皆將使都市火災發生理論的解釋能力受空間變異影響降低。此外,在實證分析的文獻中,都市火災研究多以臺灣六都為對象進行討論。本研究則以臺灣中型城市,彰化縣員林市,做為案例進行探討。採用平均最近鄰分析發現建築物火災呈現空間聚集現象,再經核密度評估法及空間自相關之空間相關性局部指標(LISA)找出建築物火災潛勢區及熱區。研究成果發現潛勢區核密度值較高及熱區(HH)皆集中於都市計畫區內。因此透過都市建築物火災理論選取人文社經特徵及都市空間型態等變項,並藉由「最小統計區」及「網格」等兩種不同樣本大小,分別進行傳統迴歸分析以及空間落遲模型與空間誤差模型作分析比較,以尋求最合適之空間模式。分析以空間誤差模型為影響因子較佳的估計,並驗證建築物火災與區域空間特性確實有空間變異之現象存在。經實證結果發現邊長50公尺「網格」較「最小統計區」為最小空間單元,有較佳解釋率,且分析結果更符合常理認知。故經網格建築物火災發生率之空間誤差模型結果分析以人口密度、中低收入戶人口數比、商業區面積比、純住宅區面積比、製造業區面積比、宗教區面積比呈正相關。本研究成果,除了提供建築物火災發生率更詳細的空間分析,亦供相關研究及未來都市規劃進行空間設計管制之參考。

英文摘要

Among the all kinds of disasters, fire is a common disaster in urban areas. It is often discussed on the scale of heavy casualties and fire simulation in public places or on the scale of building type, structure, equipment, etc., and presented with spatial statistics and environmental description, that often studying with regression analysis. However, the spatial autocorrelation and spatial heterogeneity of fire have not been carefully studied in literature, which will lack of the explanatory power of urban fire theory due to spatial variability. This study we choose Yuanlin City, a medium-sized city in Taiwan, as a case study. And that uses average nearest neighbor to find out the spatial aggregation phenomenon in the building fire, and then uses the kernel density estimation and the index of the Local Indicators of Spatial Association (LISA) find out the building fire potential and the so called "hot zone". Our results show that the high potential area and the hot zone (HH) are concentrated in the urban area. That also indicates that the humanistic socio-economic characteristics and urban spatial patterns were selected through the urban buildings fire theory. We then construct different models including the ordinal regression analysis, spatial lag model and spatial error models for analysis. Two groups with different sample scale, including "statistical area" and "cell", were used to find out the relatively appropriate model. Our empirical findings concluded that the best model is the spatial error model, and confirmed the hypothesis of the spatial variability in building fire and regional spatial characteristics. The empirical results also show that the cell grid with 50 by 50 meters square which is the smaller space unit than the "statistical area" has higher model goodness-of-fit, namely the R-squared. And the spatial error model of the grid's building fire incidence rate was positively correlated to variables of population density, population ratio of low- and middle-income households, area ratio of commercial district, area ratio of residential district, area ratio of Industrial district and area ratio of religious district.

主题分类 工程學 > 工程學綜合
参考文献
  1. Chiang, T.-H.,Lin, F.-T.(2007).A Delineation of Fire Risk Zones in Urban Area.The 2nd International Conference on Urban Disaster Reduction
    連結:
  2. 李瑞陽,陳勝義(2010)。台中市搶奪犯罪熱點與犯罪區位之空間分析。地理研究,53,23-48。
    連結:
  3. 周柏年,黃伯全,吳榮平,林元祥(2017)。居室火災致命情境建構與避難安全評估。建築學報,99(增刊),1-18。
    連結:
  4. 莊雅仲,陳淑容(2016)。中型城市發展與城鄉新連結。文化研究,22,123-146。
    連結:
  5. Anderson, T. K.(2009).Kernel density estimation and K-means clustering to profile road accident hotspots.Accident Analysis & Prevention,41(3),359-364.
  6. Anselin, L.(1988).Spatial econometrics: methods and models.Dordrecht:Kluwer Academic.
  7. Anselin, L.(1995).Local indicators of spatial association-LISA.Geographical analysis,27(2),93-115.
  8. Anselin, L. (2003). GeoDa 0.9 user’s guide. Spatial Analysis Laboratory (SAL). Department of Agricultural and Consumer Economics, University of Illinois, Urbana-Champaign, IL. Retrieved from http://www.emch.sites.oasis.unc.edu/gisph/geoda093.pdf
  9. Ardianto, R.(2018).RMIT University.
  10. Bailey, T. C.,Gatrell, A. C.(1995).Interactive spatial data analysis.Longman Scientific & Technical Essex,413(8)
  11. Chisty, M. A.,Rahman, M. M.(2020).Coping capacity assessment of urban fire disaster: an exploratory study on ward no: 30 of Old Dhaka area.International Journal of Disaster Risk Reduction,51
  12. Corcoran, J.,Higgs, G.,Rohde, D.,Chhetri, P.(2011).Investigating the association between weather conditions, calendar events and socio-economic patterns with trends in fire incidence: an Australian case study.Journal of Geographical Systems,13(2),193-226.
  13. Coty, M.-B.,McCammon, C.,Lehna, C.,Twyman, S.,Fahey, E.(2015).Home fire safety beliefs and practices in homes of urban older adults.Geriatric nursing,36(3),177-181.
  14. ESRI(2009).ArcGIS Desktop Help.Redlands, CA, USA:Environmental Systems Research Institute: Redlands, CA, USA..
  15. Fahy, R., and Maheshwari, R. (2021). Poverty and the Risk of Fire, Quincy, MA: National Fire Protection Association Research. Retrieved from https://www.nfpa.org/~/media/Files/News%20and%20Research/Fire%20statistics%20and%20reports/US%20Fire%20Problem/ospoverty.pdf
  16. Guldåker, N.,Hallin, P.-O.(2014).Spatio-temporal patterns of intentional fires, social stress and socio-economic determinants: A case study of Malmö, Sweden.Fire Safety Journal,70,71-80.
  17. Guldåker, N.,Per-Olof, H.,Nilsson, J.,Tykesson, M.(2018).Bostadsbränder i storstadsområden.Myndigheten för samhällsskydd och beredskap.
  18. Hantson, S.,Pueyo, S.,Chuvieco, E.(2015).Global fire size distribution is driven by human impact and climate.Global Ecology and Biogeography,24(1),77-86.
  19. Hastie, C.,Searle, R.(2016).Socio-economic and demographic predictors of accidental dwelling fire rates.Fire Safety Journal,84,50-56.
  20. Hu, J.,Shu, X.,Xie, S.,Tang, S.,Wu, J.,Deng, B.(2019).Socioeconomic determinants of urban fire risk: a city-wide analysis of 283 Chinese cities from 2013 to 2016.Fire Safety Journal,110
  21. Huang, X.,Li, H.,Li, X.,Zhang, L.(2019).Fire numerical simulation analysis for large-scale public building in 3D GIS.The IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium
  22. Jennings, C. R.(2013).Social and economic characteristics as determinants of residential fire risk in urban neighborhoods: A review of the literature.Fire Safety Journal,62,13-19.
  23. Kalinic, M.,Krisp, J. M.(2018).Kernel density estimation (KDE) vs. hot-spot analysis-detecting criminal hot spots in the City of San Francisco.The Proceeding of the 21st Conference on Geo-Information Science
  24. Monjarás-Vega, Norma Angélica(2020).Predicting forest fire kernel density at multiple scales with geographically weighted regression in Mexico.Science of the Total Environment,718
  25. Sabel, C.(1998).Peaks and Troughs: Space-Time Cluster Detection in Rare Diseases.The ESRI User's Conference,San Diego, Calif.:
  26. Silverman, B. W.(2018).Density estimation for statistics and data analysis.New York:Routledge.
  27. Song, C.,Kwan, M.-P.,Zhu, J.(2017).Modeling fire occurrence at the city scale: A comparison between geographically weighted regression and global linear regression.Int J Environ Res Public Health,14(4),396.
  28. Taridala, S.,Yudono, A.,Ramli, M.I.,Akil, A.(2016).A GIS-based Model for Urban Fire Risk and Fire Station Allocation Assessment. The Case of Central Business District (CBD), Kendari City, Indonesia.The 1st Geoplanning International Conferences,Bali city:
  29. Thompson, O. F.,Galea, E. R.,Hulse, L. M.(2018).A review of the literature on human behaviour in dwelling fires.Safety science,109,303-312.
  30. Tishi, T. R.(2015).Department of Urban and Regional Planning Bangladesh University of Engineering and Technology.
  31. Todorovic, S. (2020). Modelling risk factors in urban residential fires in Helsinki. The University of Helsingin. Retrieved from http://hdl.handle.net/10138/316107
  32. Todorovic, S., Rekola, H., Muukkonen, P., and Bernelius, V. (2020). Asuinrakennuspalon riskin ja siihen vaikuttavien tekijöiden maantieteellinen mallinnus Helsingin pelastustoimen alueella. Helsingin: kaupungin pelastuslaitoksen julkaisuja. Retrieved from https://helda.helsinki.fi/handle/10138/326501
  33. Tomar, S.,Kaur, A.,Sarma, K.,Dangi, H.(2018).Fire Risk Assessment and Fire Hazard Zonation Mapping using GIS in South-West Division of Delhi.Iaetsd journal for advanced research in applied sciences,5(3),213-220.
  34. Wahlqvist, J.,van Hees, P.(2016).Influence of the built environment on design fires.Case Studies in Fire Safety,5,20-33.
  35. Wuschke, K.,Clare, J.,Garis, L.(2013).Temporal and geographic clustering of residential structure fires: A theoretical platform for targeted fire prevention.Fire Safety Journal,62,3-12.
  36. Xia, Z.,Li, H.,Chen, Y.,Yu, W.(2019).Detecting urban fire high-risk regions using colocation pattern measures.Sustainable cities and society,49
  37. 王怡驊(2019)。國立中興大學環境工程學系。
  38. 王建元(2020)。國立清華大學環境與文化資源學系。
  39. 余宗庭(2020)。國立臺灣海洋大學河海工程學系。
  40. 吳榮平(2007)。國立臺北大學都市計劃研究所。
  41. 李威儀(2008)。台北市內湖地區都市防災空間系統規劃。地理資訊系統季刊,2(2),23-32。
  42. 李清安(2018)。國立臺北科技大學土木工程系。
  43. 林晏辰(2016)。國立政治大學。
  44. 林智偉(2017)。亞洲大學光電與通訊學系。
  45. 姜驎容(2021)。中央警察大學消防科學研究所。
  46. 許佳莉(2020)。國立中興大學環境工程學系。
  47. 郭乃誠(2022)。國立成功大學都市計劃學系。
  48. 陳威哲,陳建元(2018)。嘉義縣火災易致災區域分析。臺灣災害管理研討會,新北市:
  49. 陳德育(2019)。國立中興大學應用數學系。
  50. 黃川夏(2018)。國立屏東科技大學土木工程學系。
  51. 黃煒(2019)。國立臺北科技大學建築系。
  52. 溫在弘(2015).空間分析:方法與應用.臺北:雙葉書廊有限公司.