题名

使用陸域雷射掃描監測以底岩為主的河道對於小至中等規模之洪水事件的反應

并列篇名

Monitoring channel responses to flood events of low to moderate magnitudes in a bedrock-dominated river using morphological budgeting by terrestrial laser scanning

DOI

10.6234/JGR.2016.64.03

作者

郭鎮維(Cheng-Wei Kuo);張有和(Yo-Ho Chang);Gary Brierley

关键词

河道形貌 ; 規模與頻率 ; 地形有效性 ; 陸域雷射掃描 ; 河谷受限 ; channel morphology ; magnitude-frequency ; geomorphic effectiveness ; terrestrial laser scanning ; valley confinement

期刊名称

地理研究

卷期/出版年月

64期(2016 / 05 / 01)

页次

45 - 68

内容语文

繁體中文

中文摘要

不同規模與頻率的洪水事件對於河道形貌的改變程度有所不同。遙測技術以及數值地形資料處理的不斷進步,對於侵淤的時空變化分析十分有幫助。雖然基於數值高程模型(DEM)的形貌收支法(morphological budgeting approach)已被廣泛地應用於監測侵淤體積的時間變化,但是評估高能量的受限河道(confined channels)的地形有效性(geomorphic effectiveness)的研究仍然較為缺乏。本研究藉由陸域雷射掃描,監測立霧溪中三段河道從2009到2012年的變化,藉此探討河道對於小至中等規模洪水的反應,並評估其地形有效性。研究結果顯示,採用空間均一誤差(spatial uniform error)與空間差異誤差(spatial various error)所估計的侵淤體積大致相近,但後者較前者更能反映河床的變化以及資料密度。地形有效性的差異主要受控於河谷受限性以及河床中地形單元的組成與配置。小規模的年洪水可以移動礫石和砂,在受限與非受限河道都能創造出局部的侵淤(深度< 0.5 m)。在受限河道中,底岩的出露以及穩定的沉積單元限制了河道型態的改變。非受限河道由於有較低的單位河川功率,造成該河段中巨礫再次移動的時間間隔較受限河道為久。河床侵淤的空間型態的頻繁改變,顯示出立霧溪對於小至中等洪水事件十分敏感,此類地處旺盛造山帶的河流系統,具有陡急的河川、狹窄的谷床、豐富的沉積物來源但有限的儲存空間等特性。

英文摘要

Changes to channel morphology reflect geomorphic work by flood events of differing magnitude and frequency. Advances in remote sensing and digital terrain processing now allow for sophisticated analysis of spatial and temporal changes in erosion and deposition. Although the morphological budgeting approach using digital elevation models of difference has been widely applied to track the volume estimation of changes in erosion and deposition over time, appraisals of geomorphic effectiveness in high-energy confined and partly confined channels are still lacking. This study applied terrestrial laser scanning to monitor three reaches of the Liwu River, a bedrock-dominated river in eastern Taiwan, from 2009 to 2012, to investigate channel responses to flood events of low to moderate magnitude and also to appraise their geomorphic effectiveness. Variability in geomorphic effectiveness reflected valley confinement and the composition/configuration of geomorphic units on the channel bed. Annual low magnitude flood events reworked gravel and sand deposits, creating local scour and fill (< 0.5 m in depth) in both the confined and unconfined reaches. Lower unit stream power in the wider, less-confined reach resulted in longer intervals between phases of boulder reworking relative to the confined reach. Bedrock exposure and stable sediment storage units in the confined reach restricted changes to the channel pattern. Successive moderate and low magnitude events in 2012 created an evident erosion of 7,556 m3 (~ 1 m in depth) and were able to modify channel configuration in partly confined and unconfined reaches. Frequent changes in patterns of scour and fill on the channel bed indicate that the Liwu River is highly sensitive to flood events of low to moderate magnitude. This reflects an active orogenic river system characterized by a steep channel and narrow valley floors with limited accommodation space but abundant sediment.

主题分类 人文學 > 地理及區域研究
参考文献
  1. Baker, V.R.(1977).Stream-channel response to floods, with examples from central Texas.Bulletin of the Geological Society of America,88(8),1057-1071.
  2. Baker, V.R.(Ed.),Kochel, R.C.(Ed.),Patton, P.C.(Ed.)(1988).Flood Geomorphology.Chichester:Wiley.
  3. Barbour, J.R.,Stark, C.P.,Lin, C.W.,Chen, H.,Horng, M.J.,Ko, C.P.,Yi, T.C.,Tsai, T.T.,Chang, W.S.,Lee, S.P.,Huang, C.(2009).Magnitude-frequency distributions of boundary shear stress along a rapidly eroding bedrock rive.Geophysical Research Letters,36(4),L04401.
  4. Billi, P.(Ed.),Hey, R.D.(Ed.),Thorne, C.R.(Ed.),Tacconi, P.(Ed.)(1992).Dynamics of Gravel-Bed Rivers.Chichester:Wiley.
  5. Brasington, J.,Langham, J.,Rumsby, B.(2003).Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport.Geomorphology,53(3-4),299-316.
  6. Brasington, J.,Rumsby, B.T.,Mcvey, R.A.(2000).Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey.Earth Surface Processes and Landforms,25(9),973-990.
  7. Brasington, J.,Vericat, D.,Rychkov, I.(2012).Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning.Water Resources Research,48(11),W11519.
  8. Brooks, A.P.,Brierley, G.J.(1997).Geomorphic responses of lower Bega River to catchment disturbance, 1851-1926.Geomorphology,18(3-4),291-304.
  9. Brooks, A.P.,Brierley, G.J.,Millar, R.G.(2003).The long-term control of vegetation and woody debris on channel and flood-plain evolution: Insights from a paired catchment study in southeastern Australia.Geomorphology,51(1-3),7-29.
  10. Chang, R.J.,Dan, K.S.,Lin, S.M.(2000).Effects of Artificial Dams on Geomorphic, Geological and Geographical Landscapes of the Liwu Drainage Basin.Hualien:Taroko National Park Headquarters.
  11. Costa, J.E.,O'Connor, J.E.(1995).Geomorphically effective floods.Natural and Anthropogenic Influences in Fluvial Geomorphology,Washington, D.C.:
  12. Croke, J.,Todd, P.,Thompson, C.,Watson, F.,Denham, R.,Khanal, G.(2013).The use of multi temporal LiDAR to assess basin-scale erosion and deposition following the catastrophic January 2011 Lockyer flood, SE Queensland, Australia.Geomorphology,184,111-126.
  13. Dadson, S.J.,Hovius, N.,Chen, H.,Dade, W.B.,Lin, J.C.,Hsu, M.L.,Lin, C.W.,Horng, M.J.,Chen, T.C.,Milliman, J.,Stark, C.P.(2004).Earthquake-triggered increase in sediment delivery from an active mountain belt.Geology,32(8),733-736.
  14. Eaton, B.C.,Lapointe, M.F.(2001).Effects of large floods on sediment transport and reach morphology in the cobble-bed Sainte Marguerite River.Geomorphology,40(3-4),291-309.
  15. Fryirs, K.,Spink, A.,Brierley, G.(2009).Post-European settlement response gradients of river sensitivity and recovery across the upper Hunter catchment, Australia.Earth Surface Processes and Landforms,34(7),897-918.
  16. Fryirs, K.A.,Brierley, G.J.,Preston, N.J.,Spencer, J.(2007).Catchment-scale (dis)connectivity in sediment flux in the upper Hunter catchment, New South Wales, Australia.Geomorphology,84(3-4),297-316.
  17. Fuller, I.C.(2008).Geomorphic impacts of a 100-year flood: Kiwitea Stream, Manawatu catchment, New Zealand.Geomorphology,98(1-2),84-95.
  18. Fuller, I.C.(2007).Geomorphic work during a "150-year" storm: Contrasting behaviors of river channels in a New Zealand catchment.Annals of the Association of American Geographers,97(4),665-676.
  19. Fuller, I.C.,Basher, L.R.(2013).Riverbed Digital Elevation Models As A Tool For Holistic River Management: Motueka River, Nelson, New Zealand.River Research and Applications,29(5),619-633.
  20. Fuller, I.C.,Large, A.R.G.,Charlton, M.E.,Heritage, G.L.,Milan, D.J.(2003).Reach-scale sediment transfers: An evaluation of two morphological budgeting approaches.Earth Surface Processes and Landforms,28(8),889-903.
  21. Fuller, I.C.,Large, A.R.G.,Milan, D.J.(2003).Quantifying channel development and sediment transfer following chute cutoff in a wandering gravel-bed river.Geomorphology,54(3-4),307-323.
  22. Gray, A.B.,Warrick, J.A.,Pasternack, G.B.,Watson, E.B.,Goñi, M.A.(2014).Suspended sediment behavior in a coastal dry-summer subtropical catchment: Effects of hydrologic preconditions.Geomorphology,214,485-501.
  23. Gulyaev, S.A.,Buckeridge, J.S.(2004).Terrestrial methods for monitoring cliff erosion in an urban environment.Journal of Coastal Research,20(3),871-878.
  24. Ham, D.G.,Church, M.(2000).Bed-material transport estimated from channel morphodynamics: Chilliwack River, British Columbia.Earth Surface Processes and Landforms,25(10),1123-1142.
  25. Hartshorn, K.,Hovius, N.,Dade, W.B.,Slingerland, R.L.(2002).Climate-driven bedrock incision in an active mountain belt.Science,297(5589),2036-2038.
  26. Heritage, G.L.(Ed.),Large, A.R.G.(Ed.)(2009).Laser Scanning for the Environmental Sciences.New York:Wiley-Blackwell.
  27. Heritage, G.L.,Fuller, I.C.,Charlton, M.E.,Brewer, P.A.,Passmore, D.P.(1998).CDW photogrammetry of low relief fluvial features: Accuracy and implications for reach-scale sediment budgeting.Earth Surface Processes and Landforms,23(13),1219-1233.
  28. Heritage, G.L.,Hetherington, D.(2007).Towards a protocol for laser scanning in fluvial geomorphology.Earth Surface Processes and Landforms,32(1),66-74.
  29. Heritage, G.L.,Milan, D.J.(2004).A conceptual model of the role of excess energy in the maintenance of a riffle-pool sequence.Catena,58(3),235-257.
  30. Heritage, G.L.,Milan, D.J.(2009).Terrestrial Laser Scanning of grain roughness in a gravel-bed river.Geomorphology,113(1-2),4-11.
  31. Heritage, G.L.,Milan, D.J.,Large, A.R.G.,Fuller, I.C.(2009).Influence of survey strategy and interpolation model on DEM quality.Geomorphology,112(3-4),334-344.
  32. Hooke, J.(2003).Coarse sediment connectivity in river channel systems: a conceptual framework and methodology.Geomorphology,56(1-2),79-94.
  33. Johnson, R.M.,Warburton, J.(2002).Flooding and geomorphic impacts in a mountain torrent: Raise beck, central Lake District, England.Earth Surface Processes and Landforms,27(9),945-969.
  34. Klingeman, P.(Ed.),Beschta, R.(Ed.),Komar, P.(Ed.),Bradley, J.(Ed.)(1998).Gravel-Bed Rivers in the Environment.Colorado:Water Resources Publications LLC.
  35. Kuo, C.-W.,Brierley, G.J.(2013).The influence of landscape configuration upon patterns of sediment storage in a highly connected river system.Geomorphology,180-181,255-266..
  36. Kuo, C.-W.,Brierley, G.J.(2014).The influence of landscape connectivity and landslide dynamics upon channel adjustments and sediment flux in the Liwu Basin, Taiwan.Earth Surface Processes and Landforms,39(15),2038-2055.
  37. Lane, S.N.,Richards, K.S.,Chandler, J.H.(1996).Discharge and sediment supply controls on erosion and deposition in a dynamic alluvial channel.Geomorphology,15(1),1-15.
  38. Lane, S.N.,Westaway, R.M.,Hicks, D.M.(2003).Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing.Earth Surface Processes and Landforms,28(3),249-271.
  39. Lindsay, J.B.,Ashmore, P.E.(2002).The effects of survey frequency on estimates of scour and fill in braided river model.Earth Surface Processes and Landforms,27(1),27-43.
  40. Magilligan, F.J.(1992).Thresholds and the spatial variability of flood power during extreme floods.Geomorphology,5(3-5),373-390.
  41. Magilligan, F.J.,Phillips, J.D.,James, L.A.,Gomez, B.(1998).Geomorphic and sedimentological controls on the effectiveness of an extreme flood.Journal of Geology,106(1),87-96.
  42. Maund, J.G.(Ed.),Eddleston, M.(Ed.)(1998).Geohazards in Engineering Geology.London:Geological Society.
  43. Milan, D.J.(2012).Geomorphic impact and system recovery following an extreme flood in an upland stream: Thinhope Burn, northern England, UK.Geomorphology,138(1),319-328.
  44. Milan, D.J.,Heritage, G.L.,Hetherington, D.(2007).Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river.Earth Surface Processes and Landforms,32(11),1657-1674..
  45. Milan, D.J.,Heritage, G.L.,Large, A.R.G.,Entwistle, N.S.(2010).Mapping hydraulic biotopes using terrestrial laser scan data of water surface properties.Earth Surface Processes and Landforms,35(8),918-931.
  46. Milan, D.J.,Heritage, G.L.,Large, A.R.G.,Fuller, I.C.(2011).Filtering spatial error from DEMs: Implications for morphological change estimation.Geomorphology,125(1),160-171.
  47. Miller, A.J.(1995).Valley morphology and boundary conditions influencing spatial patterns of flood flow.Natural and Anthropogenic Influences in Fluvial Geomorphology,Washington, D.C.:
  48. Milliman, J.D.,Syvitski, J.P.M.(1992).Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers.Journal of Geology,100(5),525-544.
  49. Nagihara, S.,Mulligan, K.R.,Xiong, W.(2004).Use of a three-dimensional laser scanner to digitally capture the topography of sand dunes in high spatial resolution.Earth Surface Processes and Landforms,29(3),391-398.
  50. Nanson, G.C.(1986).Episodes of vertical accretion and catastrophic stripping: a model of disequilibrium flood-plain development.Geological Society of America Bulletin,97(12),1467-1475.
  51. Resop, J.P.,Hession, W.C.(2010).Terrestrial laser scanning for monitoring streambank retreat: Comparison with traditional surveying techniques.Journal of Hydraulic Engineering,136(10),794-798.
  52. Rychkov, I.,Brasington, J.,Vericat, D.(2012).Computational and methodological aspects of terrestrial surface analysis based on point clouds.Computers and Geosciences,42,64-70.
  53. Schaller, M.,Hovius, N.,Willett, S.D.,Ivy-Ochs, S.,Synal, H.A.,Chen, M.C.(2005).Fluvial bedrock incision in the active mountain belt of Taiwan from in situ-produced cosmogenic nuclides.Earth Surface Processes and Landforms,30(8),955-971.
  54. Schwendel, A.C.,Fuller, I.C.,Death, R.G.(2012).Assessing DEM interpolation methods for effective representation of upland stream morphology for rapid appraisal of bed stability.River Research and Applications,28(5),567-584.
  55. Siart, C.,Forbriger, M.,Nowaczinski, E.,Hecht, S.,Höfle, B.(2013).Fusion of multi-resolution surface (terrestrial laser scanning) and subsurface geodata (ERT, SRT) for karst landform investigation and geomorphometric quantification.Earth Surface Processes and Landforms,38(10),1135-1147.
  56. Thompson, C.,Croke, J.(2013).Geomorphic effects, flood power, and channel competence of a catastrophic flood in confined and unconfined reaches of the upper Lockyer valley, southeast Queensland, Australia.Geomorphology,197,156-169.
  57. Toone, J.,Rice, S.P.,Piégay, H.(2014).Spatial discontinuity and temporal evolution of channel morphology along a mixed bedrock-alluvial river, upper DrÔ me River, southeast France: Contingent responses to external and internal controls.Geomorphology,205,5-16.
  58. Turowski, J.M.,Hovius, N.,Wilson, A.,Horng, M.J.(2008).Hydraulic geometry, river sediment and the definition of bedrock channels.Geomorphology,99(1-4),26-38.
  59. Warner, R.F.(Ed.)(1988).Fluvial Geomorphology of Australia.New York:Academic Press.
  60. Water Resources Agency(2012).Hydrological year book of Taiwan, Republic of China.Taipei:Ministry of Economic Affairs.
  61. Westaway, R.M.,Lane, S.N.,Hicks, D.M.(2003).Remote survey of large-scale braided, gravel-bed rivers using digital photogrammetry and image analysis.International Journal of Remote Sensing,24(4),795-815.
  62. Wheaton, J.M.,Brasington, J.,Darby, S.E.,Sear, D.A.(2010).Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets.Earth Surface Processes and Landforms,35(2),136-156.
  63. Whipple, K.X.(2004).Bedrock rivers and the geomorphology of active orogens.Annual Review of Earth and Planetary Sciences,32(1),151-185.
  64. Williams, R.D.,Brasington, J.,Vericat, D.,Hicks, D.M.(2013).Hyperscale terrain modelling of braided rivers: Fusing mobile terrestrial laser scanning and optical bathymetric mapping.Earth Surface Processes and Landforms,39(2),167-183.
  65. Wilson, A.,Hovius, N.,Turowski, J.M.(2013).Upstream-facing convex surfaces: Bedrock bedforms produced by fluvial bedload abrasion.Geomorphology,180-181(0),187-204.
  66. Wolman, M.G.,Gerson, R.(1978).Relative scales of effectiveness of climate in watershed geomorphology.Earth Surface Processes,3(2),189-208.
  67. Wolman, M.G.,Miller, J.P.(1960).Magnitude and frequency of forces in geomorphic processes.Journal of Geology,68(1),54-74.
  68. Wu, C.C.,Kuo, Y.H.(1999).Typhoons affecting Taiwan: current understanding and future challenges.Bulletin of the American Meteorological Society,80(1),67-80.
  69. 水利署(2012)。2012 水文年報。台北市=Taipei:經濟部水利署=Ministry of Economic Affairs。