题名

應用手機信令軌跡資料推估通勤道路之時空地震災害風險

并列篇名

Estimation of Space-Time Traffic Corridor Earthquake Risk Exposure Based on Cellular Trajectory Data

DOI

10.6234/JGR.202112_(74).0005

作者

陳彥儒(Yan-Ru Chen);張家浚(Jia-Jun Chang);張國楨(Kuo-Chen Chang)

关键词

手機信令資料 ; 時空分析 ; 地震災害風險評估 ; Call Detail Record (CDR) ; space-time analysis ; earthquake disaster risk assessment

期刊名称

地理研究

卷期/出版年月

74期(2021 / 12 / 01)

页次

105 - 141

内容语文

繁體中文

中文摘要

臺灣由於地理位置的特殊性,地震、颱風等自然災害頻傳。統計自民國47年至108年為止,平均每年發生3.6次颱風,地震為0.5次。儘管地震發生次數較少,但平均每次所造成的社會經濟損失卻最為慘重。身處如此的環境之中,更是突顯了災害風險評估的重要性。在評估災害風險時,往往忽略了風險的時間動態特性,無法在更細緻的時空尺度上提供災害防救決策。風險評估其中一個很重要的元素是暴露度,人流適合作為道路上暴露度的指標,於災害風險評估時,動態的因素如人流是影響暴露度最主要的變數,所產出之時空風險地圖於平時便能提升該地居民的風險知覺,也可幫助救災人員於事前制定應變措施,而手機信令資料能夠以較低的成本取得真實的人口動態暴露數據。本研究藉由此數據在風險評估中加入人口移動的時空動態特性,研究區設定為高雄市內,切分不同的時間區段,藉此挖掘並觀察通勤道路的地震災害風險時空模式,改善以往假定靜態災害風險的不足。研究成果顯示:道路暴露度與風險值皆由06:00急遽上升,12:00稍趨緩,直到接近17:00時再度上升並達到最高值,隨後逐漸下降至隔日凌晨。空間分布則是以中正路、中山路、國道10號為主要風險高峰道路。道路的風險時空分布以新興熱點分析後得知,凌晨至通勤尖峰與中午至通勤尖峰這兩個時段呈現較高風險熱點強度,但時間趨勢上前者熱點較晚出現,後者熱點則是逐步增強。災害風險的時空模式探勘結果,能夠在減災階段上提升風險知覺;在整備階段,能夠協助兵棋推演腳本的擬定、並且以更細緻的時空尺度規劃設備物資的調度、以及交通的規劃,增強地方的災害應對能力。

英文摘要

Due to the special geographical location of Taiwan, hazards such as earthquakes and typhoons occur very frequently. According to statistics, from 1948 to 2019, typhoons occurred 3.6 times, and earthquakes occurred 0.5 times on average per year. Although there are fewer earthquakes than typhoons, the earthquake's average negative social and economic impacts are extremely severe. Being in such a vulnerable environment highlights the importance of disaster risk assessment. When assessing disaster risk, the space-time dynamic characteristics of risk are often ignored, and it is impossible to provide disaster prevention decisions on a more accurate space-time scale. In order to include space-time characteristics of population movement to risk assessment, Call Detail Record (CDR) data were used because it can obtain more samples of real population dynamics at a lower cost. In this study, traffic corridor data were analyzed at different time windows to observe space-time patterns, so that the static disaster risk assessments in the past can be improved. The results of this research show that the corridor exposure and risk value both rose sharply from 06:00, until slowing down at 12:00. It rose again and reached the highest value near 17:00, and then gradually decreased to the early morning of the next day. Zhongzheng Road, Zhongshan Road, and National Freeway 10 were the main risk peak corridors. The space-time risk distribution of corridors was analyzed based on emerging hotspots. The two time windows, "03:00 - 08:00" and "11:00 - 17:00", showed higher risk hotspot intensity, but the former hotspot appeared later in the time trend, while the latter hotspot gradually intensified. The data mining results of the disaster risk space-time patterns can improve the risk perception in the mitigation phase, and assist in the preparation of simulation exercises in the preparedness phase. In addition, it can also plan the dispatchment of equipment and supplies on a more accurate space-time scale as well as improve transportation planning in order to enhance local capabilities when facing disasters.

主题分类 人文學 > 地理及區域研究
参考文献
  1. 何明錦, M.J.,洪鴻智, H.Z.,陳建忠, J.Z.,陳令韡, L.J.,簡長毅, C.Y.,陳素櫻, S.Y.,王暉堯, H.Y.(2009)。綜合性地震脆弱度與風險評估:以新竹市爲例。建築學報,70_S,111-126。
    連結:
  2. 洪鴻智, H.Z.,陳令韡, L.W.(2012)。颱洪災害之整合性脆弱度評估—大甲溪流域之應用。地理學報,65,79-96。
    連結:
  3. 楊惠萱, H.X.,陳怡臻, Y.Z.,李欣輯, X.J.(2014)。天然災害社會脆弱度指標之建立及評估:以鄉鎮層級為例。災害防救科技與管理學刊,3(2),71-93。
    連結:
  4. 蕭煥章, H.Z.(2008)。鄉鎮市區水災脆弱度評估模式之研究。華岡地理學報,21,1-18。
    連結:
  5. 蘇昭郎, Z.L.,黃詩倩, S.Q.,陳禹銘, Y.M.(2009)。災害風險評估研究之探討。災害防救電子報,48,1-10。
    連結:
  6. Ahas, R.,Aasa, A.,Yuan, Y.,Raubal, M.,Smoreda, Z.,Liu, Y.,Ziemlicki, C.,Tiru, M.,Zook, M.(2015).Everyday space–time geographies: using mobile phone-based sensor data to monitor urban activity in Harbin, Paris, and Tallinn.International Journal of Geographical Information Science,29(11),2017-2039.
  7. Alexander, L.P.,González, M.C.(2015).Assessing the impact of real-time ridesharing on urban traffic using mobile phone data.Proc. UrbComp
  8. Aubrecht, C.,Fuchs, S.,Neuhold, C.(2013).Spatio-temporal aspects and dimensions in integrated disaster risk management.Natural Hazards,68(3),1205-1216.
  9. Blondel, V. D.,Decuyper, A.,Krings, G.(2015).A survey of results on mobile phone datasets analysis.EPJ data science,4(1),10.
  10. Catmull, E.,Rom, R.(1974).A class of local interpolating splines.Computer Aided Geometric Design
  11. Chen, G.,Hoteit, S.,Viana, A. C.,Fiore, M.,Sarraute, C.(2018).Enriching sparse mobility information in Call Detail Records.Computer Communications,122,44-58.
  12. Cheng, X.,Fang, L.Y.,Hong, X.M.,Yang, L.Q.(2017).Exploiting mobile big data: Sources, features, and applications.IEEE Network,31(1 M),1500295NM.
  13. Cinnamon, J.,Jones, S. K.,Adger, W. N.(2016).Evidence and future potential of mobile phone data for disease disaster management.Geoforum,75,253-264.
  14. Esri (n.d.). How kernel density works. Tool Reference. ttps://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/how-kernel-density-works.htm.(Retrieved 2019/10/18)
  15. Federal Emergency Management Agency(2010).Hazus® MH MR5 Technical Manuals and User's Manuals.Washington, D.C..
  16. Field, C. B.(Ed.),Barros, V.(Ed.),Stocker, T. F.(Ed.),Dahe, Q.(Ed.)(2012).Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of The Intergovernmental Panel on Climate Change.Cambridge University Press.
  17. Iqbal, M.S.,Choudhury, C.F.,Wang, P.,González, M.C.(2014).Development of origin–destination matrices using mobile phone call data.Transportation Research Part C,40,63-74.
  18. Khan, H.,Vasilescu, L. G.,Khan, A.(2008).Disaster management cycle-a theoretical approach.Journal of Management and Marketing,6(1),43-50.
  19. Lane, N.D.,Miluzzo, E.,Lu, H.,Peebles, D.,Choudhury, T.,Campbell, A.T.(2010).A survey of mobile phone sensing.IEEE Communications Magzines,48(9),140-150.
  20. Lind, A.,Hadachi, A.,Batrashev, O.(2017).A new approach for mobile positioning using the CDR data of cellular networks.2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS)
  21. Lindsay, B. R.(2012).,Congressional Research Service, Library of Congress.
  22. Long, J. A.(2016).Kinematic interpolation of movement data.International Journal of Geographical Information Science,30(5),854-868.
  23. Nirupama, N.(2012).Risk and vulnerability assessment: a comprehensive approach.International Journal of Disaster Resilience in the Built Environment,3(2),103-114.
  24. Nyhan, M.,Grauwin, S.,Britter, R.,Misstear, B.,McNabola, A.,Laden, F.,Barrett, S.R.H.,Ratti, C.(2016).“Exposure Track”—The Impact of Mobile-Device-Based Mobility Patterns on Quantifying Population Exposure to Air Pollution.Environ. Sci. Technol,50(17),9671-9681.
  25. Parzen, E.(1962).On estimation of a probability density and mode Ann.Math. Stat,33,1065-1076.
  26. Renner, K.,Schneiderbauer, S.,Pruß, F.,Kofler, C.,Martin, D.,Cockings, S.(2018).Spatio-temporal population modelling as improved exposure information for risk assessments tested in the Autonomous Province of Bolzano.International Journal of Disaster Risk Reduction,27,470-479.
  27. Robinson, L.(2017).Words into Action Guidelines: National Disaster Risk Assessment, Special Topic: Earthquake Hazard and Risk Assessment.United Nations Office for Disaster Risk Reduction=UNISDR.
  28. Rosenblatt, M.(1956).A central limit theorem and a strong mixing condition.Proceedings of the National Academy of Sciences of the United States of America,42(1),43.
  29. Shaw, S. L.,Tsou, M. H.,Ye, X.(2016).Human dynamics in the mobile and big data era.International Journal of Geographical Information Science,30(9),1687-1693.
  30. Shaw, S. L.,Yu, H.,Bombom, L. S.(2008).A space‐time GIS approach to exploring large individual‐based spatiotemporal datasets.Transactions in GIS,12(4),425-441.
  31. Smith, A.,Martin, D.,Cockings, S.(2016).Spatio-temporal population modelling for enhanced assessment of urban exposure to flood risk.Applied Spatial Analysis and Policy,9(2),145-163.
  32. Steenbruggen, J.,Tranos, E.,Nijkamp, P.(2015).Data from mobile phone operators: A tool for smarter cities?.Telecommunications Policy,39(3-4),335-346.
  33. Tatem, A.J.,Huang, Z.,Narib, C.,Kumar, U.,Kandula, D.,Pindolia, D.K.,Lourenço, C.(2014).Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning.Malaria journal,13(1),52.
  34. Toole, J.L.,Ulm, M.,González, M.C.,Bauer, D.(2012).Inferring land use from mobile phone activity.Proceedings of the ACM SIGKDD International Workshop on Urban Computing
  35. Wang, H.Y.,Calabrese, F.,Lorenzo, G.D.,Ratti, C.(2010).Transportation mode inference from anonymized and aggregated mobile phone call detail records.Annual Conference on Intelligent Transportation Systems
  36. Wesolowski, A,Stresman, G,Eagle, N.(2014).Quantifying travel behavior for infectious disease research: a comparison of data from surveys and mobile phones.Sci Rep,14(4),5678.
  37. Wilson, R.,Erbach-Schoenberg, E.,Albert, M.,Power, D.,Tudge, S.,Gonzalez, M.,Guthrie, S.,Chamberlain, H.,Brooks, C.,Hughes, C.,Pitonakova, L.,Buckee, C.,Lu, X.,Wetter, E.,Tatem, A.,Bengtsson, L.(2016).Rapid and near realtime assessments of population displacement using mobile phone data following disasters: The 2015 Nepal Earthquake.PLOS Currents Disasters
  38. Xu, Y.,Shaw, S.L.,Zhao, Z.L.,Yin, L.,Lu, F.,Chen, J.,Fang, Z.X.,Li, Q.Q.(2016).Another tale of two cities: Understanding human activity space using actively tracked cellphone location data.Annals of the American Association of Geographers,106(2),489-502.
  39. Yu, B.,Kim, S. H.(2006).Interpolating and using most likely trajectories in moving-objects databases.International Conference on Database and Expert Systems Applications,Berlin, Heidelberg:
  40. Yu, B.,Kim, S. H.,Bailey, T.,Gamboa, R.(2004).Curve-based representation of moving object trajectories.Proceedings. International Database Engineering and Applications Symposium, 2004. IDEAS'04
  41. 內政部消防署(2019):天然災害統計。https://www.nfa.gov.tw/cht/index.php?code=list&ids=233。(2019/12/25 瀏覽)【National Fire Agency, Ministry of the Interior (2019). Natural Hazard Statistics. https://www.nfa.gov.tw/cht/index.php?code=list&ids=233. (accessed 2019/12/25).】
  42. 王晉元, J.Y.(2019)。,臺北市=Taipei City:交通運輸研究所=Institute of Transportation and Communications。
  43. 國家地震工程研究中心=National Earthquake Engineering Research Center(2016).臺灣地震損失評估系統(TELES)使用手冊.
  44. 國家災害防救科技中心=National Disaster Prevention and Rescue Science and Technology Center(2016).地震衝擊資訊平台(TERIA)使用資料與模式說明手冊.
  45. 莊睦雄, M.X.,楊礎毓, C.Y.,林文苑, W.Y.(2017)。TELES 與 TERIA 地震分析在防救災決策之研析—以宜蘭縣災害防救演練為例。設計學年刊,5
  46. 陳人卿, R.Q.,吳昱龍, Y.L.,劉晏余, Y.Y.,吳秉儒, B.R.,林佳瑩, J.Y.(2018)。地震引致臺北都會區重要設施衝擊情境分析—以大阪北部地震反思臺灣地震災害。臺灣災害管理研討會
  47. 黃凱昀, K.Y.(2016)。臺南市=Tainan City,國立成功大學都市計劃學系=Department of Urban Planning, National Cheng Kung University。
  48. 劉淑燕, S.Y.,吳佳容, J.R.,李沁妍, Q.Y.,鄧敏政, M.Z.,李洋寧, Y.N.,李中生, Z.S.,柯孝勳, X.X.,簡賢文, X.W.(2014)。,未出版
  49. 謝馨頤, X.Y.,康玉萱, Y.X.,洪文孝, W.X.,吳佳容, J.R.,劉淑燕, S.Y.(2016)。地震網格建置與衝擊分析應用—以新城斷層為例。2016 臺灣災害管理學會十週年年會