题名

墾丁地區階地土壤類型與碳儲量之初估

并列篇名

Classifications of the soils of terraces in Kenting Peninsula and their preliminary estimations for soil carbon stocks

DOI

10.6234/JGR.202311_(78).0001

作者

黃文樹(Wen-Shu Huang);蔡衡(Heng Tsai);許正一(Zeng-Yi Hseu);黃旭村(Shiuh-Tsuen Huang)

关键词

海階 ; 土壤化育 ; 土壤地理 ; 土壤分類 ; 土壤碳儲量 ; marine terrace ; pedogenesis ; soil geography ; soil classification ; soil carbon stock

期刊名称

地理研究

卷期/出版年月

78期(2023 / 11 / 01)

页次

1 - 25

内容语文

繁體中文;英文

中文摘要

本研究在墾丁地區採取6個代表性土壤樣本,探討土壤的化育特徵、作用與分類,並進而推估各土壤表層的土壤碳儲量。結果顯示,土壤化育特徵與化育程度隨地形面年代增加而增高,較高位土壤呈現輕度磚紅壤化。按照美國土壤分類系統,化育程度低的KT-5、KT-4和KT-3a(0-200cm)為新成土(Entisols),化育程度較高的土壤為極育土(Ultisols)。各土壤間除了KT-2和KT-3b表層土壤碳儲量較高,其餘土壤的表層碳儲量均偏低(<4kg/m^2),各表層土壤之碳儲量,與土壤構造、理化性質等均無明顯的關聯性。另比較台灣其他地區的土壤碳儲量推估之研究,發現各地土壤表土的碳儲量和土壤類型、植被、降水量等並無明顯之關聯性,而與氣溫因子之間具較明顯的負相關性,兩者的相關係數約0.7(p<0.05),不過土壤表層碳儲量與氣溫之間的因果關聯性,仍需進一步的調查研究來證實。

英文摘要

Six soils were sampled in the Kenting area to reveal pedogenic characteristics, processes and classification, as well as to estimate the soil organic carbon stocks. The pedogenic morphologies and physicochemical properties indicated that the developmental degrees of the soils increase with age. However, the older soils showed weak lateralization based on the Alt, Fet, and Sit ratios. Three soils, KT-5, KT-4, and KT-3a (0-200cm), could be classified as Entisols, whereas the other soils were classified as Ultisols according to the Soil Taxonomy. The topsoils (0-30 cm) of the KT-2 and KT-3b had high amounts of soil carbon stocks, but carbon stocks on the other soils were less than 4 kg/m^2. Soil carbon stocks of the topsoils for each soil showed no evident relationship with soil structures and physicochemical properties. We further reviewed several soil carbon stock studies. Soil carbon stocks of the topsoils within varied ecosystems in Taiwan were not related to vegetation, soil types, and precipitations but related to mean annual temperatures, of which the correlation coefficient of the latter is about 0.7.

主题分类 人文學 > 地理及區域研究
参考文献
  1. 黃文樹, W. S.,蔡衡, H.(2016)。台灣紅土之分類與成因-一個綜觀性回顧。地理學報,81,43-69。
    連結:
  2. 黃文樹, W. S.,蔡衡, H.,許正一, Z. Y.(2012)。恆春半島晚更新世珊瑚礁海階上覆紅色土壤母質來源之探討。中國地理學會會刊,48,3-20。
    連結:
  3. 中央氣象局觀測資料查詢-恆春,https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp(2021/07/30 瀏覽)。【Central Weather Bureau inquiry of observation data-Hengchung. https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp (accessed 2021/07/30) 】
  4. Adhikari, K.,Hartemink, A. E.(2016).Linking soils to ecosystem services — A global review.Geoderma,262,101-111.
  5. Batjes, N. H.(1995).Total carbon and nitrogen in the soils of the world.Eurpean Journal of Soil Science,65,4-21.
  6. Batjes, N. H.(2016).Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks.Geoderma,269,61-68.
  7. Baveye, P. C.,Schnee, L. S. ,Boivin, P.,Laba, M.,Radulovich, R.(2020).Soil organic matter research and climate change: Merely restoring carbon versus restoring soil functions.Frontiers in Environmental Science,8,161.
  8. Birkeland, P.W.(1999).Soils and Geomorphology.London, UK:Oxford University Press.
  9. Blake, G. R.,Hartge, K. H.(1986).Bulk density.Methods of soil analysis. Part 1.,Madison, WI.:
  10. Blécourt, M.,Corre, M. D.,Paudel, E.,Harrison, R. D.,Brumme, R.,Veldkamp, E.(2017).Spatial variability in soil organic carbon in a tropical montane landscape: associations between soil organic carbon and land use, soil properties, vegetation, and topography vary across plot to landscape scales.Soil,3,123-137.
  11. Bouma, J.(2019).Soil security in sustainable development.Soil Systems,3(1),5.
  12. Bullock, P.,Thompson, M. L.(1985).Micromorphology of Alfisols.Soil micromorphology and soil classification,Madison, WI:
  13. Chen, C. P.,Juang, K. W.,Cheng, C. C.,Pai, C. W.(2016).Effects of adjacent land-use types on the distribution of soil organic carbon stocks in the montane area of central Taiwan.Botanical Studies,57,32.
  14. Chen, Y.G.,Liu, T.K.(1993).Holocene radiocarbon dates in Hengchun Peninsula and their neotectonic implications.Journal of the Geological Society of China,36,457-479.
  15. Chen, Z. S.,Hseu, Z.Y.(1997).Total organic carbon pool in soils of Taiwan.Proc. Natl. Sci. Council ROC Part B Life Sci,21,120-127.
  16. Chi, W. C.,Reed, D. L.,Moore, G.,Nguyen, T.,Liu, C. S.,Lundberg, N.(2003).Tectonic wedging along the rear of the offshore Taiwan accretionary prism.Tectonophysics,374,199-217.
  17. Chiou, W.L.(1991).The vegetation of Hengchun natural preserved area. Bull. Taiwan Forest Research.Institute New Series,6(3),203-227.
  18. Dieleman, W. I. J.,Venter, M.,Ramachandra, A.,Krockenberger, A. K.,Bird, M.(2013).Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage.Geoderma,204-205,59-67.
  19. Eswaran, H.,Van Den-Berg, E.,Reich, P.(1993).Organic carbon in soils of the world.Soil Science Society of American Journal,57,192-194.
  20. FAO(2017).Soil Organic Carbon: the hidden potential.Rome, Italy:Food and Agriculture Organization of the United Nations.
  21. Fedoroff, N.,Eswaran, H..(1985).Micromorphology of Ultisols.Soil micromorphology and soil classification,Madison, WI:
  22. Gee, G.W.,Bauder, J.W.(1986).Particle-size analysis.Methods of Soil Analysis, Part 1,Madison, WI:
  23. Hallmark, C. T.,Wilding, L. P.,Smeck, N. E.(1982).Silicon.Methods of soil analysis, Part 2, Chemical and Microbiological Properties,Madison, WI:
  24. Huang, W. S.,Jien, S. H.,Huang, S. T.,Tsai, H.,Hseu, Z. Y.(2017).Pedogenesis of red soils overlaid coral reef terraces in the Southern Taiwan.Quaternary International,441,62-76.
  25. Huang, W. S.,Jien, S. H.,Tsai, H.,Hseu, Z. Y.,Huang, S. T.(2016).Soil evolution in a tropical climate: An example from a chronosequence on marine terraces inTaiwan.Catena,139,61-72.
  26. Jien, S. H.,Hseu, Z. Y.,Guo, H. Y.,Tsai, C. C.,Chen, Z. S.(2010).Organic carbon storage and management strategies of the rutal soils on the basis of soil information system in Taiwan.Proceedings of International Workshop on evaluation and sustainable management of soil carbon sesquestration in Asian countries,Bogor, Indonesia:
  27. Koch, A.,McBratney, A.,Adams, M.,Field, D.,Hill, R.,Crawford, J.,Minasny, B.,Lal, R.,Abbott, L.,Angers, D.,Baldock, J.,Barbier, E.,Binkley, D.,Parton, W.,Wall, D. H.,Bird, M.,Bouma, J.,Chenu, Cl,Flora, C. B.,Goulding, K.,Grunwald, S.,Hempel, J.,Jastrow, J.,Lehmann, J.,Lorenz, K.,Morgan, C. L.,Rice, C. W.,Whitehead, D.,Young, I.,Zimmermann, M.(2013).Soil security: solving the global soil crisis.Global Policy,4(4),434-441.
  28. Lal, R.(2008).Carbon sequestration.Phil. Trans. R. Soc. B,363,815-830.
  29. Liew, P.M.,Lin, C. F.(1987).Holocene tectonic activity of the Hengchun Peninsula as evidenced by the deformation of marine terraces.Memoir of the Geological Society of China,9,241-256.
  30. McBratney, A.,Field, D. J.,Koch, A.(2014).The dimensions of soil security.Geoderma,213,203-213.
  31. Mehra, O. P.,Jackson, M. L.(1960).Iron oxides removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate.Clays Clay Miner,7,317-327.
  32. Nelson, D. W.,Sommer, L. E.(1982).Total carbon, organic carbon, and organic matter.Methods of soil analysis, Part 2. Chemical and microbiological properties,Madison, WI:
  33. Rodeghiero, M.,Heinemeyer, A.,Schrumpf, M.,Bellamy, P.(2010).Determination of soil carbon stocks and changes.Soil Carbon Dynamics: An Integrated Methodology,Cambridge:
  34. Scharlemann, J. P. W.,Tanner, E. V. J.,Hiederer, R.,Kapos, V.(2014).Global soil carbon: understanding and managing the largest terrestrial carbon pool.Carbon Management,5(1),81-91.
  35. Schellmann, W.(1983).A new definition of laterite.Nat. Resour. Dev,18,7-21.
  36. Schellmann, W.(1981).Considerations on the definition and classification of lterites.Proceedings of the International Seminar on Lateritisation Processes,Trivandrum, India:
  37. Schmidt, M. W. I.,Torn, M. S.,Abiven, S.,Dittmar, T.,Guggenberger, G.,Janssens, I. A.,Kleber, M.,Kogel-Knabner, I.,Lehmann, J.,Manning, D. A. C.,Nannipieri, P.,Rasse, D. P.,Weiner, S.,Trumbore, S. E.(2011).Persistence of soil organic matter as an ecosystem property.Nature,478,49-56.
  38. Simon, A.,Dhendup, K.,Rai, P. B.,Gratzer, G.(2018).Soil carbon stocks along elevational gradients in Eastern Himalayan mountain forests.Geoderma Regional,12,28-38.
  39. Simonson, R. W.(1959).Outline of a generalised theory of soil genesis.Proceedings of the Soil Science Society of America,23,152-156.
  40. Soil Survey Staff(1993).Soil Survey Manual, USDA Handbook.Washington, DC:U. S. Gov.
  41. Soil Survey Staff(2014).Keys to soil taxonomy.Washington, D.C.:U.S. Gov. Print. Office..
  42. Soriano, M. C. H.(ed.)(2013).Soil Processes and Current Trends in Quality Assessment.London, UK:IntechOpen Limited.
  43. Torn, M. S.,Trumbore, S. E.,Chadwick, O. A.,Vitousek, P. M.,Hendricks, D. M.(1997).Mineral control of soil organic carbon storage and turnover.Nature,389,170-173.
  44. Tsai, C. C.,Hu, T. E.,Lin, K. C.,Chen, Z. S.(2009).Estimation of soil organic carbon stocks in plantation forest soils of northern Taiwan.Taiwan Journal of Forest Science,24(2),103-115.
  45. Tsui, C. C.,Tsai, C. C.,Chen, Z. S.(2013).Soil organic carbon stocks in relation to elevation gradients in volcanic ash soils of Taiwan.Geoderma,209-210,119-127.
  46. Wiesmeier, M.,Barthold, F.,Spörlein, P.,Geu, U.,Hangen, E.,Reischl, A.,Schilling, B.,Angst, G.,von Lützow, M.,Kögel-Knabner, I.(2014).Estimation of total organic carbon storage and its driving factors in soils of Bavaria (southeast Germany).Geoderma Regional,1,67-78.
  47. Wiesmeiera, M.,Urbanski, L.,Hobley, E.,Lang, B.,von Lützow, M.,Marin-Spiotta, E.,Wesemael, B.,Rabot, E.,Ließ, M.,Garcia-Franco, N.,Wollschläger, U.,Vogelf, H. J.,Kögel-Knabnera, I.(2019).Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales.Geoderma,333,149-162.
  48. 王為敏, W. M.(1997)。臺北=Taipei,國立臺灣大學農業化學系研究所=Department of Agricultural chemistry, National Taiwan University。
  49. 石再添, Z. T.,鄧國雄, K. H.,張瑞津, J. C.,楊貴三, G. S.(1985)。恆春地區的活斷層與地形面。地理教育,11,1-14。
  50. 江博能, P. N.,余瑞珠, J. C.,賴彥任, Y. J.,蔡僑隆, C. L.(2018)。臺灣大學實驗林北勢溪集水區人工林土壤養分與碳儲量。中華林學季刊,51,1-20。
  51. 江博能, P. N.,賴彥任, Y. J.(2019)。復育造林初期土壤呼吸的季節變化與土壤碳儲量。國立臺灣大學生物資源暨農學院實驗林研究報告,33(3),183-196。
  52. 何正品, Z. P.,簡士濠, S. H.,許正一, Z. Y.(2011)。,南投=Nantou:玉山國家公園管理處=Yushang National Park。
  53. 吳樂群, L. C.,陳華玟, H. W.(1990)。臺灣南部恆春西臺地北段晚更新世地層之沈積層序。經濟部中央地質調查所彙刊,6,13-50。
  54. 林國銓, K. C.,黃菊美, C. M.,王巧萍, C. P.,張乃航, N. H.(2003)。六龜台灣杉人工林碳和氮累積和分布。台灣林業科學,19,225-235。
  55. 林淑芬, S. F.(1990)。臺北=Taipei,國立臺灣大學地質研究所=Department of Geology, Natioanl Taiwan University。
  56. 張仲民, C. M.(1981).土壤化育與形態學.臺北=Taipei:國立編譯館=National Institute for Compilation and Translation.
  57. 張惠珠, H. C.,徐國士, K. S.,邱文良, W. L.,呂勝由, S. Y.,徐成本, C. P.,范發輝, F. H.(1985)。,屏東=Pingdong:墾丁國家公園管理處=Kenting National Park。
  58. 張瑀芳, Y. F.,林世宗, S. T.,蔡呈奇, C. C.(2006)。臺灣東北部柳杉人工林土壤有機碳儲量的推估。台灣林業科學,21(4),383-393。
  59. 許中民, C. M.(1986)。臺北=Taipei,國立臺灣大學地質學研究所=Department of Geologic Science, National Taiwan University。
  60. 許民陽, M. Y.(1989)。臺北=Taipei,中國文化大學地學研究所=Department of Geography, Chinese Cultural University。
  61. 陳文山, W. S.,李偉彰, W. C.,黃能偉, N. W.,顏一勤, Y. C.,楊志成, J. C.,楊小青, S. C.,陳勇全, Y. C.,宋時驊, S. H.(2005)。恆春半島增積岩體的構造與地層特性:全新世恆春斷層的活動性。西太平洋地質科學,5,129-154。
  62. 陳文山, W. S.,鄭穎敏, Y. M.,黃奇瑜, C. Y.(1985)。臺灣南部恆春半島之地質。地質,7(1),31-48。
  63. 陳琦玲, C. L.,林木連, M. L.,郭鴻裕, H. Y.,江志峰, C. F.,劉滄芩, T. S.,朱戟良, C. L.(2000)。土地利用改變對台灣農地土壤有機碳存量之影響評估。土壤與環境,3(4),363-378。
  64. 葉慶龍, Q. L.(1994)。臺北=Taipei,國立臺灣大學森林學研究所=School of Forestry and Resource Conservation, National Taiwan University。