题名

耦合結構牆性能化抗震設計法

并列篇名

Performance-based design for earthquake-resistant coupled structural walls

DOI

10.6849/SE.201703_32(1).0003

作者

洪崇展(Chung-Chan Hung);盧威廷(Wei-Ting Lu);鄭宇翔(Yu-Hsiang Cheng)

关键词

耦合結構牆 ; 性能化設計 ; 抗震行為 ; 結構設計 ; coupled structural walls ; performance-based design ; nonlinear time-history analysis

期刊名称

結構工程

卷期/出版年月

32卷1期(2017 / 03 / 01)

页次

49 - 70

内容语文

繁體中文

中文摘要

耦合結構牆乃由兩座以上之結構牆,由連接梁結合成一體之結構物,常用以增加位處地震頻繁區域內中高層建物之側向強度與勁度。現今耐震設計規範乃基於強度設計法,雖可確保結構物於強震下之安全,卻無法使設計者或使用者得知結構物於不同層級地震下之預期行為。本研究目標為發展耦合結構牆之性能化設計法,允許設計者選定不同地震災害等級下之結構性能目標,依此目標以及選定之耦合率進行結構設計,並使耦合結構牆得以於地震時展現理想之降伏消能機制,充分發揮非彈性變形消能之能力。文中以四座耦合結構牆為設計範例,闡述設計流程,並建立其有限元素分析模型,以非線性動態歷時分析,模擬耦合牆系統之地震行為,分析結果顯示,使用本文建議之性能化設計法,不僅可使耦合牆系統展現良好之降伏消能機制,並可於不同地震災害層級下,分別達成預設之性能目標。

英文摘要

Coupled structural walls are often used in the buildings located in regions with high seismic risk. A coupled wall structure consists of two or more structural walls linked by coupling beams. It is able to provide efficient lateral strength and stiffness, which effectively reduces the drift response of buildings under earthquakes. Current seismic design codes are based on strength methods. Although they are able to prevent structures that are designed accordingly from collapse, the designers and users have limited knowledge about the seismic behavior of the designed structures under different levels of earthquakes. The objective of the present study is to develop a performance-based design method for coupled walls. The developed method allows engineers to pre-select the desirable coupling ratio and performance objectives for coupled walls, and then design the structures accordingly. In addition, it also facilitates the ideal yielding mechanism of coupled walls under earthquakes. Four example coupled wall structures are designed in this study using the proposed method. Their computational models are also built and analyzed using nonlinear time history procedures. The results show that the designed coupled walls are able to exhibit satisfactory structural yielding mechanisms and show the seismic behavior satisfying the pre-selected performance objectives for different seismic hazard levels.

主题分类 工程學 > 工程學總論
工程學 > 土木與建築工程
参考文献
  1. (2011).ACI 318 Building code requirements for structural concrete (318-11).Farmington Hills, Mich:
  2. (2013).OpenSees version 2.4 User Manual.Berkeley:Pacific Earthquake Engineering Research Center, University of California.
  3. American Institute of Steel Construction=AISC(2010).Seismic Provisions for Structural Steel Buildings.Chicago, IL:
  4. ASCE=American Society of Civil Engineers(2010).ASCE/SEI 7-10: Minimum Design Loads for Buildings and Other Structures..Reston, VA, USA:American Society of Civil Engineers.
  5. Chaallal, O.,Gauthier, D.,Malenfant, P.(1996).Classification methodology for coupled shear walls.ASCE, Journal of Structural Engineering,122(12),1453-1458.
  6. Chao, S.-H.,Goel, S. C.,Lee, S.-S.(2007).A seismic design lateral force distribution based on inelastic state of structures.Earthquake Spectra,23(3),547-569.
  7. CSA=Canadian Standards Association(2010).CSA (Canadian Standards Association). (2010). “CSA A23.3-04 Design of Concrete Structures.” Rexdale, Canada..
  8. El-Tawil, S.,Harries, K. A.,Fortney, P. J.,Shahrooz, B. M.,Kurama, Y.(2010).Seismic design of hybrid coupled wall systems – state-of-the-art.ASCE Journal of Structural Engineering,136(7),755-769.
  9. El-Tawil, S.,Kuenzli, C. M.(2002).Pushover of hybrid coupled walls. Part II: Analysis and behavior.ASCE Journal of Structural Engineering,128(10),1282-1289.
  10. El-Tawil, S.,Kuenzli, C. M.,Hassan, M(2002).Pushover of hybrid coupled walls. Part I: Design and modeling.ASCE Journal of Structural Engineering,128(10),1272-1281.
  11. FEMA-356(2000).NEHRP guidelines for the seismic rehabilitation of buildings.Redwood City, California:Applied Technology Council.
  12. Fox, M.,Sullivan, T.,Beyer, K.(2014).Comparison of force-based and displacement-based design approaches for RC coupled walls in New Zealand.Bulletin of the New Zealand Society for Earthquake Engineering,47,190-205.
  13. Galano, L.,Vignoli, A.(2000).Seismic behavior of short coupling beams with different reinforcement layouts.ACI Structural Journal,97(6),876-885.
  14. Gong, B.,Shahrooz, B. M.(2001).Concrete-steel composite coupling beams. II: Subassembly testing and design verification.Journal of Structural Engineering, ASCE,127(6),632-638.
  15. Gong, B.,Shahrooz, B. M.(2001).Concrete-steel composite coupling beams. I: Component testing.Journal of Structural Engineering, ASCE,127(6),625-631.
  16. Harries, K. A.,McNeice, D. S(2006).Performance-based design of high-rise coupled wall systems.The Structural Design of Tall and Special Buildings,15(3),289-306.
  17. Harries, K. A.,Mitchell, D.,Cook, W. D.,Redwood, R. G.(1993).Seismic response of steel beams coupling concrete walls.Journal of Structural Engineering,119(12),3611-3629.
  18. Harries, K.,Moulton, J.,Clemson, R.(2004).Parametric study of coupled wall behavior – implications for the design of coupling beams.ASCE Journal of Structural Engineering,130(3),480-488.
  19. Hassan, M,El-Tawil, S.(2004).Inelastic dynamic behavior of hybrid coupled walls.Journal of Structural Engineering,130(2),285-296.
  20. Hindi, R. A.,Hassan, M. A.(2004).Shear capacity of diagonally reinforced coupling beams.Engineering Structures,26(10),1437-1446.
  21. Hung C.-C.(2010).Ann Arbor, Michigan,University of Michigan.
  22. Hung, C. C.,Lu, W. T.(2015).Towards achieving the desired seismic performance for hybrid coupled structural walls.Earthquakes and Structures,9(6),1251-1272.
  23. Hung, C.-C.(2012).Modified full operator hybrid simulation algorithm and its application to the seismic response simulation of a composite coupled wall system.Journal of Earthquake Engineering,16(6),759-776.
  24. Hung, C.-C.,Chen, Y.-S.(2016).Innovative ECC jacketing for retrofitting shear-deficient RC members.Construction and Building Materials,111,408-418.
  25. Hung, C.-C.,Chueh, C.–Y.(2016).Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar.Engineering Structures,122,108-120.
  26. Hung, C.-C.,El-Tawil, S.(2010).Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites.ACI Materials Journal,107(6),569-577.
  27. Hung, C.-C.,El-Tawil, S.(2011).Seismic behavior of a coupled wall system with HPFRC materials in critical regions.ASCE Journal of Structural Engineering,137(12),1499-1507.
  28. Hung, C.-C.,Li, S.-H.(2013).Three-dimensional model for analysis of high performance fiber reinforced cement-based composites.Composites Part B: Engineering,45(1),1441-1447.
  29. Hung, C.-C.,Su, Y.-F.(2016).Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations.Construction and Building Materials,118,194-203.
  30. Hung, C.-C.,Su, Y.-F.(2013).On modeling coupling beams incorporating strain-hardening cement-based composites.Computers and Concrete,12(4),243-259.
  31. Hung, C.-C.,Su, Y.-F.,Yu, K.-H.(2013).Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites.Construction and Building Materials,41,37-48.
  32. Hung, C.-C.,Yen, W.-M.,Yu, K.-H.(2016).Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: Experimental investigation and computational analysis.Construction and Building Materials,107,287-298.
  33. Kwan, A. K. H.,Zhao, Z.-Z.(2001).Cyclic behaviour of deep reinforced concrete coupling beams.Structures and Buildings,152(3),283-293.
  34. Leelataviwat, S.,Goel, S.,Stojadinovic, B.(1999).Toward performance-based seismic design of structures.Earthquake Spectra,15(3),435-461.
  35. Lequesne, R. D.,Wight, J. K.,Parra-Montesinos, G. J.(2010).High-performance fiber-reinforced concrete coupled-wall systems: design and behavior.14th ECEE
  36. Parra-Montesinos, G. J.,Canbolat, B. A.,Jeyaraman, G. R.(2006).Relaxation of confinement reinforcement requirements in structural walls through the use of fiber reinforced cement composites.8th National Conference on Earthquake Engineering
  37. Paulay, T.(2002).A displacement-focused seismic design of mixed building systems.Earthquake Spectra,18(4),689-718.
  38. Paulay, T.(1971).Coupling beams of reinforced concrete shear walls.Journal of Structural Engineering,97(3),843-862.
  39. Paulay, T.,Binney, J. R.(1974).Diagonally reinforced coupling beams of shear walls.International Concrete Abstracts Portal,21(52),579-598.
  40. Paulay, T.,Goodsir, W. J.(1985).The ductility of structural walls.Bulletin of the New Zealand Society for Earthquake Engineering,18(3)
  41. Paulay, T.,Priestley, M. J. N..(1992).Seismic design of reinforced concrete and masonry buildings.Wiley, New York:
  42. Tassios, T. P.,Moretti, M.,Bezas, A.(1996).On the behavior and ductility of reinforced concrete coupling beams of shear walls.ACI structural Journal,93(6),711-720.
  43. U.S.–Japan Planning Group(1992).,Ann Arbor, Michigan, USA:Univ. of Michigan.
  44. Uang, C. M.(1988).,Berkeley, CA.:Earthquake Engineering Research Center, University of California.
  45. 洪崇展,盧威廷(2014)。複合耦合結構牆抗震系統之設計與非線性側推分析。結構工程,29(3),40-58。
  46. 陳正誠,鄭敏元,Fikri, R.。內政部建築研究所委託研究報告內政部建築研究所委託研究報告,內政部建築研究所。