题名

含鋼板阻尼器構架耐震設計與分析

并列篇名

Seismic Design, Tests and Analysis of Steel Panel Dampers for Steel Moment Frames

DOI

10.6849/SE.201706_32(2).0001

作者

許仲翔(Chung-Hsiang Hsu);李昭賢(Chao-Hsien Li);金步遠(Pu-Yuan Chin);蔡克銓(Keh-Chyuan Tsai)

关键词

鋼板阻尼器 ; 容量設計 ; 耐震設計 ; 有限元素模型分析 ; 非線性結構分析 ; steel panel damper ; capacity design ; seismic design ; finite element model analysis ; non-linear structural analysis

期刊名称

結構工程

卷期/出版年月

32卷2期(2017 / 06 / 01)

页次

5 - 34

内容语文

繁體中文

中文摘要

鋼板阻尼器(Steel Panel Damper, SPD)為耐震間柱的一種,在抗彎構架(Moment Resisting Frame, MRF)中設置SPD可增加結構的側向勁度、強度與韌性。本文利用兩組SPD試體說明SPD的構造原理與力學特性,介紹三段式SPD容量設計與延遲塑性挫屈加勁設計方法。另介紹含鋼板阻尼器構架(SPD-MRF)的耐震設計,與邊界梁容量設計,並設計一棟六層SPD-MRF範例,來闡明SPD-MRF塑鉸產生機制與非線性動力歷時分析結果。分析證實ABAQUS有限元素、PISA3D結構模型均能準確模擬試體之反覆受力變形反應。統計非線性動力歷時分析結果可得MCE級地震作用下,SPD核心段最大剪變形角平均值加標準差為0.055弧度,而兩組SPD試體反覆載重試驗結果核心段最大剪變形角皆可達0.11弧度,且累積塑性變形可達127以上,約可承受4次MCE級地震才可能產生破壞。顯示本文所提之三段式SPD具備足夠的耐震容量。最後本文提出以等效單構件模擬三段式SPD的建模方法,並探討連接段相對長度與勁度對整體SPD彈性勁度、降伏側位移角與降伏後勁度之影響,說明設計適當之上下連接段不僅能確保彈性反應,還能在保持SPD的強度下,調節整體SPD之降伏側位移角、彈性與降伏後勁度。

英文摘要

A ductile vierendeel frame can be constructed by incorporating the steel panel dampers (SPDs) into the moment resisting frame (SPD-MRF). Thus, the lateral stiffness, strength and energy dissipation capacity of the building can be enhanced. This paper presents the mechanical properties, capacity design procedures and the buckling-delaying stiffeners for the proposed 3-segment SPDs using two specimens subjected to cyclic increasing deformations. This paper also discusses the seismic design procedures of the SPD itself and the boundary beams connected to the SPDs in typical SPD-MRFs. Tests confirm that the proposed SPDs possess excellent ductility and energy dissipation capacities. The cyclic force vs. deformation relationships of the two SPD specimens can be accurately predicted using either the ABAQUS or PISA3D model analyses. This paper also investigates the seismic performance of a 6-story example SPD-MRF by using nonlinear response history analysis procedures and 240 ground accelerations. Results indicate that under the 80 MCE ground accelerations, the mean plus one standard deviation shear deformation of the SPD inelastic core segment is 0.055 radian, substantially less than the 0.11 radian capacity observed from both two SPD specimens. In addition, the cumulative plastic deformation of the proposed SPD is 127 times the yield deformation, capable of sustaining the MCE at least 4 times before failure. This paper concludes the method of using one equivalent element for effective modeling of the 3-segment SPD. The effects of the core segment relative length and stiffness on the overall SPD elastic, post-elastic stiffness, elastic deformation limit and inelastic deformational demand are discussed.

主题分类 工程學 > 工程學總論
工程學 > 土木與建築工程
参考文献
  1. AISC 341-10(2010).Seismic Provisions for Structural Steel Buildings.Chicago:American Insstitution of Steel Construction.
  2. AISC 360-10(2010).Specification of Structural Steel Building.Chicago:American Insstitution of Steel Construction.
  3. ASCE 7-10(2010).Minimum Design Loads for Buildings and Other Structures.American Society of Civil Engineers.
  4. Baker, J(2010).Baker, J (2010) PEER site‐ specific ground motions for Oakland: record selection notes..
  5. Chen, Z.,Ge, H.,Usami, T.(2006).Hysteretic model of stiffened shear panel dampers.Journal of Structural Engineering,132(3),478-483.
  6. Chuang, MC,Hsieh, SH,Wu, AC,Li, CH(2016).Application of the automated model fitting to simulation of a steel frame with buckling-restrained braces.Proceedings of the 16th International Conference on Computing in Civil and Building Engineering,Osaka, Japan:
  7. Chusilp, P.,Usami, T.(2002).New elastic stability formulas for multiple-stiffened shear panels.Journal of Structural Engineering,128(6),833-836.
  8. Deng, K.,Pan, P.,Li, W.,Xue, Y.(2015).Development of a buckling restrained shear panel damper.Journal of Constructional Steel Research,106,311-321.
  9. Ge, H. B.,Kaneko, K.,Usami, T.(2008).Capacity of stiffened steel shear panels as a structural control damper.Proceedings, 14th World Conference on Earthquake Engineering
  10. Hagiwara, N.、Kawahata, E.、Sudo, K.、Ishinabe, Y.、Hirakawa, T.(2014)。Seismic performance of the stud-type low-yield strength steel shear panel dampers under compressive axial force, Parts 1-3。Abstract Volume of Technical Papers of Annual Meeting
  11. Hancock, J.,Watson-Lamprey, J.,Abrahamson, N.,Bommer, J.,Markatis, A.,McCoy, E.,Mendis, R.(2006).An improved method of matching response spectra of recorded earthquake ground motion using wavelets.J. Earthquake Eng,10,67-89.
  12. Ito, M.、Hayashi, K.、Tanihuchi, Y.、Kurata, M.、Nakashima, M.(2014)。Stiffening Force of Slitted Steel Shear Wall Restrained by Wood Panels and Its Seismic Performance, Part 1 and Part 2。Proceedings of Annual Meeting, Kinki Branch of Architectural Institute of Japan
  13. Katsura, D.、Sasaki, Y.、Sasaki, S.、Tanaka, K.(2000)。Discussion on Maximum Shear Strength of Shear Panel Damper using Low Yield Strength Steel, Part 1 and Part 2。Summaries of technical papers of annual meeting Architectural Institute of Japan
  14. Koike, Y.、Yanaka, T.、Usami, T.、Ge, H.、Oshita, S.、Sagou, D.、Uno, Y.(2008)。An experimental study on developing high-performance stiffened shear panel dampers。Journal of Construction Engineering,54A
  15. Kurama, Y. C.,Farrow, K. T.(2003).Ground motion scaling methods for different site conditions and structure characteristics.Earthquake Engineering and Structural Dynamics,32,2425-2450.
  16. Liu, Y.、Aoki, T.、Takaku, T.、Fukumoto, Y.(2007)。Cyclic loading tests of shear panel damper made of low yield steel。Journal of construction engineering,53A
  17. Malhotra, P. K.(2003).Strong-motion records for site-specific analysis.Earthquake Spectra,19(3),557-578.
  18. Mito, M.、Tamura, R.、Isogai, T.、Shimizu, K.、Fuchigamihi, K.(1997)。Study on seismic design methods for buildings with steel dampers。Abstract Volume of Technical Papers of Annual Meeting, Architectural Institute of Japan
  19. Otani, M.、Inai, E.、Matsuura, T.、Ito, Y.(2001)。Structural performance of shear panel dampers using low yield strength steel, Parts 1-3。Abstract Volume of Technical Papers of Annual Meeting
  20. Sasaki, Y.、Tanaka, K.(1999)。Static tests of shear steel panel damper made of ultra low yield steel under low tensile and compressed axial forces。Abstract Volume of Technical Papers of Annual Meeting
  21. Shome, N.,Cornell, C.A.(1998).Normalization and scaling accelerograms for nonlinear structural analysis.Sixth U.S. National Conference on Earthquake Engineering,Seattle, WA.:
  22. Sudo, K.、Hagiwara, N.、Kawahata, E.、Chiba, K.、Ishinabe, Y.、Hirakawa, T.(2013)。The Study on Deformation Performance of The Stud-type Low Yield Point Steel Damper Under Compression Axial Force。Abstract Volume of Technical Papers of Annual Meeting
  23. Suga, A.、Muyama, K.、Cheng, P.B.、Choi, J.、Takishita, R.、Ooi, K.(2006)。Seismic retrofit using steel panel dampers made of low yield steel to link structures, Part 1 and Part 2。Abstract Volume of Technical Papers of Annual Meeting
  24. Suzuki, I.、Sasaki, S.、Katsura, D.、Tahara, K.(2012)。Experimental study on the structural performance of shear panel dampers under constant vertical deformation。Japanese Society of Steel Construction : steel construction engineering,19(73)
  25. Tsai, K.C.,Wang, H.Y.,Chen, C.H.,Liu, G.Y.,Wang, K.J.(2001).Substructure Pseudo Dynamic Performance of Hybrid Steel Shear Panels.International Journal of Steel Structures,1(2),95-104.
  26. Weng, Y.T.,Tsai, K.C.,Chan, Y.R.(2010).A Ground Motion Scaling Method Considering Higher-mode Effects and Structural Characteristics.Earthquake Spectra,26(5),841-867.
  27. 內政部營建署 (2007),「鋼構造建築物鋼結構設計技術規範-鋼結構極限設計規範與解說」。
  28. 內政部營建署 (2011),「建築物耐震設計規範及解說」,民國一百年,台北。
  29. 莊明介,謝尚賢,吳安傑(2015)。實驗數據自動化參數擬合方法之研究─以 BRB 實驗為例。結構工程,30(4),79-106。
  30. 許仲翔(2016)。國立台灣大學土木工程學系結構組。
  31. 魏國忠,蔡克銓,項維邦(1994)。耐震間柱構架耐震行為研究。結構工程,9(3)
被引用次数
  1. 蔡克銓,詹也影(2023)。含鋼板阻尼器構架最佳化設計與軟體。結構工程,38(3),6-33。
  2. 蔡克銓,張舉虹(2019)。含鋼板阻尼器構架最佳化設計。結構工程,34(1),27-56。
  3. 賴晉霆,蔡克銓,李濰揚,吳安傑(2023)。三段式鋼板阻尼器耐震試驗與設計研究。結構工程,38(2),83-106。
  4. 蕭輔沛,葉士瑋,翁樸文,沈文成,李翼安,李心惠(2022)。鋼筋混凝土結構補強接合部耐震行為之研究。中國土木水利工程學刊,34(5),397-406。