题名

台灣混凝土變形預測模式B4-TW建置(二):乾縮、自體收縮與總收縮

并列篇名

Establishment of B4-TW Prediction Model for Concrete Deformation in Taiwan (II): Drying Shrinkage, Autogenous Shrinkage and Total Shrinkage

DOI

10.6849/SE.201809_33(3).0004

作者

秦維邑(Wei-Yi Chin);陳振川(Jenn-Chuan Chern)

关键词

混凝土 ; 長期變形 ; 收縮 ; 高爐石粉 ; 飛灰 ; 資料庫 ; concrete ; long-term deformation ; shrinkage ; blast-furnace slag cement ; fly ash ; dataset

期刊名称

結構工程

卷期/出版年月

33卷3期(2018 / 09 / 01)

页次

65 - 86

内容语文

繁體中文

中文摘要

目前台灣之混凝土工程設計規範之混凝土收縮計算並未有明確公式,未能和混凝土材料之性質連結。致其計算常使用國外之美國ACI、AASHTO,歐洲CEB-FIP、RILEM等預測公式。混凝土變形問題仍因牽涉世界各地區氣候環境、組成材料、配比及施工實務等,而有所差異性。台灣混凝土使用之粒料性質堅實度較為不足,配比設計時為追求強度達標,有使用高漿體量、高水泥量、低水灰比、低粒料量/水泥量比等特性,上述之本土化特性非使用國外預測公式可掌握,故台灣著實需要發展良好之本土化混凝土收縮預測公式。經評估現有國內外混凝土收縮預測規範,本文選用美國西北大學Bazant等人發展於2015年提出之Model B4收縮預測公式為基礎。針對上述之台灣混凝土特性進行本土化的修正,並考慮台灣常用之砂岩粒料造成之影響,找出適用於台灣之粒料修正參數。本文亦針對含有礦物摻料之混凝土進行摻料影響之修正,選用FIB2000作為自體收縮時間成長曲線,並修正Model B4之礦物摻料參數表格,建立適合台灣使用之內含自體收縮項目的Model B4-TW收縮預測公式。結果顯示,進行本土化修正後之Model B4-TW收縮預測公式,在預測台灣普通混凝土或含有礦物摻料混凝土收縮時,均有極優表現,可發展為適用台灣本土之混凝土收縮預測公式。

英文摘要

At present, there is no definite formula for concrete shrinkage calculation in the concrete engineering design code of Taiwan, which cannot link with the nature of local concrete material. Most engineers in Taiwan often use the formula of American Concrete Institution (ACI), the American Association of State Highway and Transportation Officials (AASHTO), and European CEB-FIP and RILEM codes. The problem of concrete deformation is still different because it involves the climate environment, mix design, proportion and construction practice in different areas. The aggregate quality of the concrete used in Taiwan is poor, and the mix is designed to achieve the strength with the use of high paste volume, high cement content, low water/cement ratio, low aggregate/cement ratio and other characteristics. The localization characteristics described above cannot be mastered by foreign prediction formula, so Taiwan really needs to develop a good local concrete shrinkage prediction formula. Based on the evaluation of the existing domestic and foreign concrete shrinkage prediction formulae, this paper chooses the model B4 shrinkage prediction formula developed in 2015 by Bazant of Northwestern University. With regard to the local characteristics of the concrete in Taiwan, and the effect of the commonly used sandstone aggregate in Taiwan, the modified parameters of the aggregate are found. In this paper, the influence of concrete containing mineral admixture is modified: the FIB2000 is selected as autogenous shrinkage time growth curve; and the mineral admixture parameter table of model B4 is modified. These local modifications led to the establishment of the Model B4-TW. The results show that the model B4-TW shrinkage prediction formula, which included autogenous shrinkage, after localization correction has excellent performance in predicting the shrinkage of normal concrete or concrete containing mineral admixture in Taiwan, and can be developed as a concrete shrinkage prediction formula for Taiwan.

主题分类 工程學 > 工程學總論
工程學 > 土木與建築工程
参考文献
  1. 陳振川,廖文正,劉庭愷,秦維邑(2018)。台灣混凝土潛變收縮資料庫建置及特質分析。結構工程,33(1),103-116。
    連結:
  2. (2012).fib Model Code 2010, Vol. 1, Final Draft.
  3. AASHTO(2014).AASHTO LRFD Bridge Design Specifications.Washington DC:American Association of State Highway and Transportation Officials=AASHTO.
  4. ACI Committee 209(2008).Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete (ACI 209.2R-08).American Concrete Institute.
  5. ACI Committee 209(1982).Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures.Designing for Creep and Shrinkage in Concrete Structures, A Tribute to Adrian Pauw,Farmington Hills, MI:
  6. Bažant, Z.P.,Baweja, S.(2004).Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures: Model B3.Materials and Structures,28,357-365+415-430+488-495.
  7. Bažant, Z.P.,Hubler, M.H.,Wendner, R.(2015).RILEM Recommendation TC-242-MDCRILEM Recommendation TC-242-MDC,未出版
  8. Bažant, Z.P.,Panula, L.(1978).Practical prediction of time-dependent deformations of concrete.Materials and Structures,11(5),317.
  9. CEB(1990).Structural Concrete-Textbook on Behaviour, Design and Performance. Updated Knowledge of the CEB/FIP Model Code 1990.Lausanne, Switzerland:Federation Internationale du Beton.
  10. Chern, J. C.,Liu, T.C.(2009).Life-Cycle Management of Sustainable Public Infrastructure.International Symposium on Infrastructure and Environment,Japan:
  11. Gardner, N. J.,Lockman, M. J.(2004).Is Superposition of Creep Strains Valid for Concretes Subjected to Drying Creep?.ACI Materials Journal,101(5),409-415.
  12. Gardner, N. J.,Lockman, M. J.(2004).Is Superposition of Creep Strains Valid for Concretes Subjected to Drying Creep?.ACI Materials Journal,101(5),409-415.
  13. Hubler, M.H.,Wendner, R.,Bažant, Z.P.(2015).Statistical Justification of Model B4 for Drying and Autogenous Shrinkage of Concrete and Comparisons to Other Models.Materials and Structures,797-814.
  14. Kawai, M.,Mizyawa, S.(2004).Research Reports Ashikaga Institute of TechnologyResearch Reports Ashikaga Institute of Technology,未出版
  15. Khayat, K.(Ed.),De Schutter, G.(Ed.)(2014).Mechanical Properties of Self-Compacting Concrete.Springer.
  16. Mak, S.L.,Torii, K.(1995).Strength Development of High Strength of Ultra High-Strength Concrete Subjected to High Hydration Temperature.Cement and Concrete Research,25,1791-1802.
  17. Maruyama, I.,Sasano, H.,Lin, Mao(2016).Impact of Aggregate Properties on the Development of Shrinkage-induced Cracking in Concrete under Restraint Conditions.Cement and Concrete Research,85,82-101.
  18. Müller, H. S.,Hilsdorf, H. K.(1990).General Task Group 9.Paris, France:CEB Comit’e Euro-International du Beton.
  19. Müller, H. S.,Kvitsel, V.(2000).Creep and Shrinkage Model for Normal Concrete and HPC: Concept for a Uniform Code-Type Approach.ACI Workshop,Paris:
  20. Tazawa, E.,Miyazawa, S.(1997).Influence of Constituents and Composition on Autogenous Shrinkage of Cementitious Materials.Magazine of Concrete Research,49(178),15-22.
  21. Virgalitte, S.J.,Luther, M.D.,Rose, J.H.,Mather, Bryant(2000).,ACI Committee 233.
  22. Yang, J.,Wang, Q.,Zhou, Y.(2017).Influence of Curing Time on the Drying Shrinkage of Concretes with Different Binders and Water-to-Binder Ratios.Advanced in Materials Science and Engineering
  23. 中華民國內政部營建署,2017,混凝土結構設計規範,台內營字第 1060805829 號。
  24. 中華民國交通部,2015,公路橋梁設計規範,交技(104)字第 1045004678 號。
  25. 江盈儀(2010)。國立台灣大學土木工程學研究所。
  26. 吳秉駿(2001)。國立台灣大學土木工程研究所。
  27. 秦維邑(2017)。台北,國立台灣大學土木工程學研究所。
  28. 陳振川(1987)。環境溫、濕度對混凝土剛性路面影響:試驗與理論探討。中華民國第屆路面工程學術研討會論文集,中壢市:
  29. 陳振川(2013)。積極構架健全工程環境─持續推動優質公共建設。混凝土科技,7(4),3-25。
  30. 陳振川(2017)。潛變收縮對混凝土結構影響及台灣規範制定。台灣混凝土學會 2017 混凝土工程研討會論文集,台灣:
  31. 陳振川,王丞,廖昱霖(2017)。自充填混凝土收縮資料庫建置及分析。台灣混凝土學會2017混凝土工程研討會論文集,台灣:
  32. 陳振川,徐景文,林傑,李文欽(2013)。提升品質耐久-應訂工程設計使用年限。土木水利,40(5),12-15。
  33. 陳振川,詹穎雯(1986)。填加飛灰與高爐石粉混凝土之體積穩定探討。高爐石與飛灰在混凝土工程上應用研討會論文集
  34. 陸景文(2001)。台北,國立台灣大學土木工程學研究所。
  35. 詹穎雯(1987)。國立台灣大學土木工程學研究所。
被引用次数
  1. 陳振川,吳子良(2019)。生命週期考量之鋼管混凝土建築結構合理設計分析法。結構工程,34(1),105-122。
  2. 張國鎮,Marco Bonopera(2021)。ELASTIC MODULUS OF PRESTRESSED AND REINFORCED CONCRETE BEAMS IN TAIWAN UNDER DYNAMIC FLEXURAL LOADING。中國土木水利工程學刊,33(2),83-92。