题名

台灣混凝土彈性模數折減對數項結構相關設計規範的影響

并列篇名

Study of Influences of Reduced Elastic Modulus of Concrete on Related Structural Design Codes in Taiwan

DOI

10.6849/SE.201912_34(2).0004

作者

胡瑋秀(Wei-Hsiu Hu);廖文正(Wen-Cheng Liao)

关键词

彈性模數 ; 台灣混凝土結構設計規範 ; 台灣建築物耐震設計規範及解說 ; 鋼結構容許應力設計法規範 ; modulus of elasticity ; design code for structural concrete in Taiwan

期刊名称

結構工程

卷期/出版年月

34卷2期(2019 / 12 / 01)

页次

76 - 89

内容语文

繁體中文

中文摘要

台灣混凝土彈性模數E_c較現行規範所預估之値有偏低的趨勢,其值約為規範的80%左右,彈性模數的修正將會對版梁柱尺寸設計、設計基底剪力值和其餘與彈性模數相關的規範產生影響,如台灣混凝土結構設計規範、台灣建築物耐震設計規範及解說與鋼結構容許應力設計法規範等。然而上述相關規範沒有對其中受彈性模數影響的公式做出修改。為使設計更為準確,須探討彈性模數修正對規範的影響。本研究檢視前述規範中直接或間接與彈性模數有關的規定,探討其數項受影響的公式,並依據學理提出對應的建議。依據本研究結果,非預力單雙向版規範因應彈性模數的折減,其最小深度需要增加為1.077倍;在柱的長細效應中,當細長比為40時,其彎矩放大係數則需要增加為1.15倍;當混凝土之抗壓強度小於360 kgf/cm^2時,則單一剪力釘容許強度將變為0.89倍,所需剪力釘個數變為1.124倍。以上結果顯示,彈性模數的修正不僅單是修正E_c值公式,規範中直接或間接與彈性模數有關的規定均須要修正。

英文摘要

In Taiwan, the prediction of E_c calculated by current design code is usually overestimated by 20% of that obtained by experimental results. The revision code of E_c =12000 (f'_c)^(0.5) is 80% of current E_c =15000 (f'_c)^(0.5). The reduction of E_c would influent the size of beam and column, design value of base shear and other related structural design codes in Taiwan, such as "Design Code for Concrete Structures", "Seismic Design Specifications and Commentary of Buildings" and "Allowable Stress Design Specifications and Commentary of Steel Structures". The objectives of this research are to clarify those influences on these related structural design codes with reduced E_c and to comment and give suggestions to the engineering society. The results show that because of the reduction of E_c, the minimum thickness of reinforced concrete slab should increase by 7.7% times, moment magnification factor would increase by 1.15 times (if slenderness ratio of column is 40), number of shear concrete stud would increase by 1.124 times (if compressive strength of concrete f'_c < 360 kgf/cm^2). Structural design codes that directly or indirectly related to E_c should be modified accordingly because of the reduction of E_c.

主题分类 工程學 > 工程學總論
工程學 > 土木與建築工程
参考文献
  1. (2001).AS 3600-2001, "Australian Standard for Concrete Structures,".Sydney, Australia:Standards Australia.
  2. Branson, D. E.(1968).Design Procedures for Computing Deflections.ACI Journal Proceedings
  3. CEB-FIP(2010).fib Model Code for Concrete Structures 2010.
  4. Clough, R.W.,Penzien, J.(1993).Dynamics of Structures.New York:Mc-Graw Hill Inc..
  5. Gilbert, R. I.(1985).Deflection Control of Slabs Using Allowable Span to Depth Ratios.ACI Journal Proceedings,82(1)
  6. Hubler, M. H.,Wendner, R.,Bažant, Z. P.(2015).Comprehensive Database for Concrete Creep and Shrinkage: Analysis and Recommendations for Testing and Recording.ACI Materials Journal,112(4)
  7. Hwang, S.-J.,Chang, K.-Y.(1996).Deflection Control of Two-Way Reinforced Concrete Slabs.Journal of Structural Engineering, ASCE
  8. Ollgaard, J. G.,Slutter R. G.,Fisher J. W.(1971).Shear Strength of Stud Connectors in Light Weight and Normal Weight Concrete.AISC Engineering Journal
  9. Rangan, B. V.(1982).Control of Beam Deflections by Allowable Span-to-Depth Ratios.ACI Structural Journal,79(5)
  10. Scanlon, A.,Choi, B.S.(1999).Evaluation of ACI 318 Minimum Thickness Requirements for One-Way Slabs.ACI Structural Journal,96(4)
  11. Scanlon, A.,Lee, Y.H.(2006).Unified span to depth ratio equation for nonprestressed concrete beams and slab.ACI Structural Journal,103(1),616-621.
  12. 內政部營建署 (2011),「建築物耐震設計規範及解說」。
  13. 內政部營建署 (2017),「混凝土結構設計規範」。
  14. 內政部營建署 (2010),「鋼結構容許應力設計法規範及解說」。
  15. 日本建築學會(1990).鋼構造限界狀態設計規準(案).同解說.日本建築學會.
  16. 廖文正,林致淳,詹穎雯(2016)。台灣混凝土彈性模數建議公式研究。結構工程期刊,31(3)
  17. 劉庭愷(2017)。台北,台灣大學土木工程研究所。
被引用次数
  1. 廖文正,王映捷(2022)。建立臺灣普通及摻料混凝土強度及彈性模數時間成長函數研究。結構工程,37(1),25-49。
  2. 廖文正,張家維,吳丞駿(2022)。新世代高性能混凝土抗裂指標與力學性質研究。中國土木水利工程學刊,34(1),73-87。