题名

醫院消防撒水系統耐震性能補強評估

并列篇名

Seismic evaluation and strengthening methods for fire protection sprinkler piping systems in hospitals

DOI

10.6849/SE.202006_35(2).0005

作者

蔡詠安(Yung-An Tsai);林凡茹(Fan-Ru Lin);柴駿甫(Juin-Fu Chai);張國鎮(Kuo-Chun Chang)

关键词

消防撒水系統 ; 易損性分析 ; 數值分析 ; 簡化評估 ; 耐震補強 ; Fire protection sprinkler system ; fragility curve ; numerical analysis ; simplified assessment ; seismic strengthening design

期刊名称

結構工程

卷期/出版年月

35卷2期(2020 / 06 / 01)

页次

103 - 127

内容语文

繁體中文

中文摘要

建築結構之耐震性能在長年的研究,相較早期之建築物已有明顯的提升,在受震後的主要災害與經濟損失往往不是建築結構造成,而是非結構系統之破壞造成。醫院內非結構設備中的消防撒水系統受中小地震後,若發生天花板遭撒水頭碰撞發生擴孔、粉塵掉落,或於大震中,撒水系統之支撐破壞,失去支承能力,可能造成醫院中斷醫療機能,甚至發生淹水、火災等自發性災害。因此消防撒水系統需以性能設計法進行耐震評估,若耐震容量不足則須加裝補強裝置。本研究以台大雲林分院為案例醫院,依據甲仙地震後的破壞機制,提出消防撒水系統耐震詳細評估法以及適合業界應用之簡化評估流程,並參考NFPA13(National Fire Protection Association, 2010)補強之建議,提出四種補強方案,依據各方案之消防管線系統耐震性能表現建立易損性曲線,探討不同地震歷時之分析結果與適用性,並比較各方案之差異,以期做為消防管線系統耐震設計或補強之參考。

英文摘要

In recent years, due to the vigorous development of performance design concepts, the seismic capacity of critical building structures (such as hospitals and high-tech factories) has been improved, and the major disasters and economic losses caused by the earthquake have changed from structural to non-structural systems, which include piping systems. This study takes the medium-scale hospital in Southern Taiwan as an example to discuss the effects of installing strengthened elements on sprinkler piping systems which recommended by NFPA13. First, this research uses detailed analysis results to construct the fragility curves, and compares the fragility curves between before- and after-strengthened systems. Second, according to the dynamic characteristics of the sprinkler piping system, the simplified assessment method of original system and strengthened system are proposed in this study. It provides engineers with an alternative, rapid and approximate judgment in the seismic performances of piping systems based on in-situ observations and generic floor response spectrum.

主题分类 工程學 > 工程學總論
工程學 > 土木與建築工程
参考文献
  1. Akour, S.N.(2012).Parametric Study of Nonlinear Beam Vibration Resting on Linear Elastic Foundation.Journal of Mechanical Engineering and Automation,2,114-134.
  2. ASCE(2010).Minimum Design Loads for Buildings and Other Structures (SEI/ASCE 7-10).Reston, Virginia:American Society of Civil Engineers.
  3. Baker, J.W.(2007).Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis.Bulletin of the Seismological Society of America,97(5),1486-1501.
  4. FEMA(2012).,Washington, D.C.:Federal Emergency Management Agency.
  5. FEMA(2009).,Washington, D.C.:Federal Emergency Management Agency.
  6. Graff, K.F.(1991).Wave motion in elastic solids.New York:Dover Publications Inc.
  7. ICC-ES(2010).ICC-ES. (2010). Acceptance Criteria for Seismic Certification by Shake-Table Testing of Nonstructural Components (AC156). Brea, California: ICC Evaluation Service, LLC (A Subsidiary of the International Code Council)..
  8. Lin, F.R.,Chang, K.C.,Chai, J.F.,Lin, Z.Y.,Liao, W.I.,Huang, J.G.,Jheng, H.Z.,Chung, M.F.(2014).Experimental Study on Seismic Behavior of a Typical Sprinkler Piping System in Hospitals.Proceedings of the ASME 2014 Pressure Vessels & Piping Conference (PVP2014),Anaheim, California:
  9. NFPA(2010).NFPA. (2010). Standard for the Installation of Sprinkler Systems (NFPA13). Quincy, Massachusetts: National Fire Protection Association..
  10. 林凡茹,張國鎮,黃振綱,柴駿甫(2014)。醫院消防撒水系統機械式接頭之耐震行為與評估分析。結構工程,29(4),88-109。
  11. 胡佩文(2015)。台北,台灣大學土木研究所。
  12. 柴駿甫,黃震興,林凡茹,林震宇,王鑑翔,張洵,陳柏誠,簡子婕(2013)。,台北:國家地震工程研究中心。
  13. 葉昶辰(2016)。台北,台灣大學土木研究所。
  14. 鐘明峯(2015)。台北,台北科技大學土木工程研究所。