题名

具多重耐震性能等級之機率式結構耐震評估法

并列篇名

An approach for probabilistic seismic performance assessment of buildings considering multiple performance levels

DOI

10.6849/SE.202006_35(2).0004

作者

盧煉元(Lyan-Ywan Lu);蕭輔沛(Fu-Pei Hsiao);湯宇仕(Yu-Shi Tang);黃尹男(Yin-Nan Huang);陳慶輝(Ching-Huei Chen);李官峰(Kuan Feng Lee)

关键词

耐震評估 ; 機率式評估法 ; 多重性能等級 ; 隔震結構 ; 性能設計法 ; 增量動力分析 ; 非線性動力分析 ; 非線性塑鉸 ; seismic performance assessment ; probabilistic assessment ; multiple performance levels ; isolated building ; performance design ; incremental dynamic analysis ; nonlinear time history analysis ; plastic hinge

期刊名称

結構工程

卷期/出版年月

35卷2期(2020 / 06 / 01)

页次

65 - 102

内容语文

繁體中文

中文摘要

現有耐震評估法大多僅能用於評估建物之抗倒塌耐震能力,因其損傷準則係依據結構瀕臨倒塌之行為為主。此種耐震評估法並不適用於評估重要之功能性建物(例如:醫院、高科技廠)或隔震結構,因為此類建物係以強震中必須保有其功能性為其耐震目標之一。有鑑於此,本文乃針對具高度耐震性能要求之重要建物與隔震結構研議一套可考量多種性能目標之機率式耐震評估法及流程,此法乃參採FEMA356與ASCE 41-13之建議將建物之耐震性能等級分為:立即可用(IO)、生命安全(LS)、倒塌避免(CP)。各性能等級之損傷準則分為整體損傷準則與局部損傷準則,前者採用FEMA 356及PEER-TBI之標準;而後者則參採ASCE41-13所建議之構件損傷準則。根據這些損傷準則與增量動力分析之結果,再據以建立不同性能等級之易損曲線作為耐震評估之依據。若為隔震結構,則新增隔震極限(IL)之性能等級,以便將隔震層之安全性納入耐震評估中,其損傷準則係以隔震支承位移超過隔震設計規範所訂定之最大總位移D_(TM)為依據。本文以一幢耐震力不足之老舊建物為例,並採用滑動隔震技術對該建物進行耐震補強,再以所建議之多重性能耐震評估法,對隔震補強前後結構之耐震性能進行評估與比較,以量化隔震補強對於不同耐震性能等級之效益。評估結果顯示,原先倒塌風險極高之原始建物,經過隔震補強後,各性能等級之損傷機率指標皆明顯下降。因此,本文提出之機率式耐震評估法適用於隔震或固定基礎結構,可供工程界完整評估建物於不同耐震性能等級中之風險。

英文摘要

Most of current seismic assessment methods for buildings aim to evaluate the collapse risk of buildings, since the damage criteria of these methods are associated with the mechanism of building collapse. These methods may not be suitable for the assessment of functional facilities or seismic isolated buildings, whose performance objective is usually required to maintain their functionality after a strong earthquake. For this reason, this study proposes an approach for probabilistic seismic assessment of buildings considering multiple performance levels. This approach adopts the performance levels defined by FEMA 356 and ASCE 41-13, namely, immediate occupancy (IO), life safety (LS) and collapse prevention (CP). For each performance level, both global and local damage criteria are defined according to FEMA 356 and ASCE 41-13, respectively. Based on these damage criteria together with the result of incremental dynamic analysis, the fragility curves for each performance level can be established for seismic assessment. For buildings with isolators, a performance level called isolation limit (IL) is also considered, in order to include safety of the isolation system in the assessment procedure. The damage criterion for IL performance level is defined as when the isolator drift exceeds the maximum total isolator displacement D_(TM) given in the current isolation design code of Taiwan. For demonstration of the proposed assessment method, a 5-story old apartment building was consideredas an example. The building was retrofitted by using sliding isolators, and the seismic performance of the building before and after the implementation of isolation was evaluated using the proposed method and the results were compared, so that the benefit of retrofitting can be quantified. The assessment results show that the retrofit with the isolators greatly reduces the damage probabilities of the building at all performance levels. This demonstrates that the proposed method can be applied to evaluate seismic performance of either fixed-based or isolated building with consideration of multiple performance levels.

主题分类 工程學 > 工程學總論
工程學 > 土木與建築工程
参考文献
  1. 謝瑋桓,盧煉元,蕭輔沛,湯宇仕,黃尹男(2018)。中高樓結構機率式倒塌風險評估法之應用研究。結構工程,33(2)
    連結:
  2. (1997).,Federal Emergency Management Agency.
  3. (2007).Seismic rehabilitation of existing building.American Society of Civil Engineers.
  4. (1996).,CA:Applied Technology Council.
  5. (2000).,Federal Emergency Management Agency.
  6. (2014).Seismic rehabilitation of existing building.American Society of Civil Engineers.
  7. (2016).Minimum design loads for buildings and other structures.American Society of Civil Engineers.
  8. (2012).,Federal Emergency Management Agency.
  9. (2009).,Federal Emergency Management Agency.
  10. Baker, JW(2015).Efficient analytical fragility function fitting using dynamic structural analysis.Earthquake Spectra,31(1),579-599.
  11. Castaldo, P,Amendola, G,Palazzo, B(2017).Seismic fragility and reliability of structures isolated by friction pendulum devices: seismic reliability-based design (SRBD).Earthquake Engineer and Structural Dynamics,46,425-446.
  12. Haselton, CB,Deierlein, GG(2008).PEER ReportPEER Report,Berkeley, CA:Pacific Earthquake Engineering Research Center, University of California at Berkeley.
  13. Huang, YN,Whittaker, AS,Luco, N,Hamburger, RO(2011).Scaling Earthquake Ground Motions for Performance-Based Assessment of Buildings.Journal of Structural Engineering, ASCE,137(3),311-321.
  14. Ibarra, LF,Krawinkler, H(2005).,Stanford, CA:The John A. Blume Earthquake Engineering Research Center, Stanford University.
  15. Medina, RA,Krawinkler, H(2002).,Stanford, CA:The John A. Blume Earthquake Engineering Center, Stanford University.
  16. PEER-TBI Task7(2010).PEER ReportPEER Report,Berkeley, CA:Pacific Earthquake Engineering Research Center, University of California at Berkeley.
  17. Samanta, A,Huang, YN(2017).Ground-motion scaling for seismic performance assessment of high-rise moment-resisting frame building.Soil Dynamics and Earthquake Engineering,94,125-135.
  18. SEAOC(1995).Vision 2000: Performance-based seismic engineering of buildings.Sacramento, California:Structural Engineers Association of California.
  19. Vamvatsikos, D,Cornell, CA(2002).Incremental dynamic analysis.Earthquake Engineering and Structural Dynamics,31(3),491-514.
  20. 內政部營建署 (2011)建築物耐震設計規範及解說。
  21. 吳信賢(2017)。國立成功大學土木工程學系。
  22. 湯宇仕(2018)。國立成功大學土木工程學系。
  23. 盧煉元,王亮偉,陳慶輝,李官峰,李姿瑩,蔡諄昶(2016)。以性能為導向之二階段隔震設計法。結構工程,31(3),33-61。
  24. 蕭輔沛(2013)。國家地震工程研究中心技術報告國家地震工程研究中心技術報告,國家地震工程研究中心。
  25. 謝瑋桓(2017)。國立成功大學土木工程學系。
  26. 簡文郁(2017)。簡文郁 (2017),國家地震工程研究中心強地動組提供資料:台灣地區正規化之地震危害度曲線及其資料。
被引用次数
  1. 蕭輔沛,盧煉元,鄭弘,黃炫文(2023)。應用集中塑性模型於鋼筋混凝土結構非線性動態行為之研究。結構工程,38(1),85-117。