题名

結合振形之微振索力估算法中量測點位配置對精度的影響

并列篇名

Effect of sensor deploymentonen on the accuracy of ambient vibration method incorporating mode shape functions for cable tension estimation

DOI

10.6849/SE.202009_35(3).0005

作者

陳建州(Chien-Chou Chen);吳文華(Wen-Hwa Wu);陳欣怡(Shin-Yi Chen);賴國龍(Gwolong Lai)

关键词

微振法 ; 索力估算 ; 振形 ; 有效振動長度 ; 多點同步量測 ; 量測點位配置 ; ambient vibration method ; cable tension estimation ; mode shape ; effective vibration length ; multiple synchronous measurements ; sensor deployment

期刊名称

結構工程

卷期/出版年月

35卷3期(2020 / 09 / 01)

页次

99 - 117

内容语文

繁體中文

中文摘要

為克服複雜錨定條件造成微振索力估算法的較大誤差問題,本研究團隊近年來提出一項創新的方法,藉由導入振形函數正弦分量的擬合來決定各振態有效振動長度以排除索力計算公式中複雜邊界條件的影響,而其關鍵則在如何經由多點同步量測精準重現振形函數之正弦分量。本文首先根據理論推導出的頻率方程式與振形函數闡述此一索力量測方法的基本原理;接著再進一步利用有限元素模型,於考慮實測作業限制條件下建立包括數目與間距等量測點位配置準則;最後則進行實驗室單根鋼絞線索力量測,充分驗證所擬定量測點位配置準則的適用性以及對應的索力估算精度。

英文摘要

The complicated boundary conditions resulted from the anchorage systems at both ends usually deteriorate the accuracy of the ambient method for cable tension estimation. Motivated by tackling such a problem, a novel method incorporating the mode shape functions was recently proposed by this research group. More specifically, the fitting for the sinusoidal components of mode shape functions was adopted to determine the effective vibration length for each mode such that the interference from the complicated boundary conditions can be eliminated. The success of this method is most critically decided by the accurate reproduction of the sinusoidal components of mode shape functions based on multiple synchronous measurements. The current paper first explains the basic concepts of this cable tension estimation method with the theoretically derived mode shape functions and frequency equations. The finite element models are further employed to evaluate the accuracy of this method and establish the guidelines for the preferred sensor deployment in measurement points and spacing with the consideration of practical measurement limitations. Finally, the applicability of the developed guidelines and the corresponding accuracy in tension estimation are verified by demonstrative laboratory experiments with a prestressed strand.

主题分类 工程學 > 工程學總論
工程學 > 土木與建築工程
参考文献
  1. Chen, C. C.,Wu, W. H.,Chen, S. Y.,Lai, G.(2018).A Novel Tension Determination Approach Exempted from Complexity of Boundary Constraints by Probing Mode Shape Functions of Elastic Cables.Engineering Structures,166,152-166.
  2. Chen, C. C.,Wu, W. H.,Huang, C. H.,Lai, G.(2013).Determination of Stay Cable Force Based on Effective Vibration Length Accurately Estimated from Multiple Measurements.Smart Structures and Systems,11(4),411-433.
  3. Chen, C. C.,Wu, W. H.,Leu, M. R.,Lai, G.(2016).Tension Determination of Stay Cable or External Tendon with Complicated Constraints Using Multiple Vibration Measurements.Measurement,86,182-195.
  4. Clough, R. W.,Penzien, J.(1993).Dynamics of Structures.New York:McGraw-Hill.
  5. Dan, D.,Chen, Y.,Yan, X.(2014).Determination of Cable Force Based on the Corrected Numerical Solution of Cable Vibration Frequency Equations.Structural Engineering and Mechanics,50(1),37-52.
  6. Geradin, M.,Rixen, D.(1997).Mechanical Vibrations: Theory and Application to Structural Dynamics.Chichester, New York:John Wiley.
  7. Huang, Y. H.,Fu, J. Y.,Wang, R. H.,Gan, Q.,Rao, R.,Liu, A. R.(2014).Practical Formula to Calculate Tension of Vertical Cable with Hinged-fixed Conditions Based on Vibration Method.Journal of Vibroengineering,16(2),997-1009.
  8. Liao, W.,Ni, Y. Q.,Zheng, G.(2012).Tension Force and Structural Parameter Identification of Bridge Cables.Advances in Structural Engineering,15(6),983-995.
  9. Mebrabi, A. B.,Tabatabai, H.(1998).Unified Finite Difference Formulation for Free Vibration of Cables.Journal of Structural Engineering, ASCE,124(11),1313-1322.
  10. Sagues, A. A.,Kranc, S. C.,Eason, T. G.(2006).Vibrational Tension Measurement of External Tendons in Segmental Posttensioned Bridges.Journal of Bridge Engineering, ASCE,11(5),582-589.
  11. Wu, W. H.,Chen, C. C.,Chen, Y. C.,Lai, G.,Huang, C. M.(2018).Tension Determination for Suspenders of Arch Bridge Based on Multiple Vibration Measurements Concentrated at One End.Measurement,123,254-269.
  12. Wu, W. H.,Chen, C. C.,Leu, M. R.,Lai, G.(2012).Determination of Stay Cable Force Based on Multiple Vibration Measurements to Consider the Effects of Unsymmetrical Boundary Constraints.Proceedings of 6th European Workshop on Structural Health Monitoring,Dresden, Germany:
  13. Wu, W. H.,Chen, C. C.,Liu, C. Y.,Lai, G.(2010).Determination of Stay Cable Force Based on Multiple Vibration Measurements to Consider the Effects of Uncertain Boundary Constraints.Proceedings of 5th European Workshop on Structural Health Monitoring,Sorrento, Italy:
  14. Yan, B.,Chen, W.,Yu, J.,Jiang, X.(2019).Mode Shape-Aided Tension Force Estimation of Cable with Arbitrary Boundary Conditions.Journal of Sound and Vibration,440,315-331.
  15. Yan, B.,Yu, J.,Soliman, M.(2015).Estimation of Cable Tension Force Independent of Complex Boundary Conditions.Journal of Engineering Mechanics, ASCE,141(1),06014015.
  16. Yu, C. P.,Lai, J.,Cheng, C. C.,Chiang, C. H.(2013).Direct Evaluation of Effective Lengths of Vibrating Cables Using Responses from Dual/Three Transducers.Journal of Applied Science and Engineering,16(1),51-60.
  17. Zui, H.,Shinke, T.,Namita, Y.(1996).Practical Formula for Estimation of Cable Tension by Vibration Method.Journal of Structural Engineering, ASCE,122(6),651-656.
  18. 吳文華,陳建州,陳欣怡(2017)。根據多點微振量測進行不同類型纜索之精準索力估算。第十屆公共工程非破壞檢測技術研討會論文集,台北市:
  19. 李政寬,陳建州,周智傑,張國鎮(2006)。斜張鋼纜微振訊號有限元素法解析。中國土木水利工程學刊,18(2),279-288。