题名

自來水配水池結構耐震評估之載重需求

并列篇名

Load demand assessment of liquid storage tank in water supply facilities

DOI

10.6849/SE.202106_36(2).0003

作者

翁元滔(Yuan-Tao Weng);劉季宇(Gee-Yu Liu);沈文成(Wen-Cheng Shen);林敏郎(Min-Lang Lin);李昭賢(Chao- Hsien Li);鍾立來(Lap-Loi Chung)

关键词

自來水設施 ; 耐震評估 ; 配水池 ; water supply facilities ; seismic evaluation ; liquid storage tank

期刊名称

結構工程

卷期/出版年月

36卷2期(2021 / 06 / 01)

页次

73 - 90

内容语文

繁體中文

中文摘要

進行池狀結構之耐震評估與分析程序時,須先估算其所須考慮的靜載重、活載重、土壤載重、流體載重、溫度載重及地震載重,其中地震載重又可分成地震引致流體動態載重、土壤動態載重及構體本身之地震力等,而地震引致流體之動態載重又可分成流體衝擊模態載重、流體對流模態載重、流體垂直振動引致之水平動態載重等;其次,地震引致土壤之動態載重又可分成土壤主、被動土壓力等;另外,池狀結構構體本身亦應考慮其垂直地震力及池牆本身之側向慣性力。本研究針對國內常見的池狀結構的載重需求估算方式與耐震評估流程進行研討,俾使其耐震評估與分析程序更加完備。

英文摘要

When carrying out the seismic evaluation and analysis procedure of the liquid storage tank, the static load, live load, soil load, fluid load, temperature load and seismic load must be estimated first. The seismic load can be divided into earthquake-induced fluid dynamic load, dynamic load of the soil and the seismic force induced by the self-weight of the structure. Firstly, the dynamic load of the fluid caused by the earthquake can be further divided into the fluid impulsive modal load, the fluid convective modal load, and the horizontal dynamic load caused by the vertical vibration of the fluid. Secondly, the soil dynamic load caused earthquakes can also be divided into active soil pressure and passive soil pressure. In addition, the vertical seismic force of the liquid storage tank and the lateral inertial force of the tank wall should also be considered. This study focuses on load demand assessment methods and seismic evaluation process for the common pool-like water tank structure in Taiwan to make the seismic evaluation and analysis procedures more feasible and reasonable.

主题分类 工程學 > 工程學總論
工程學 > 土木與建築工程
参考文献
  1. ACI=American Concrete Institute(2007).API 650 Welded Steel Tanks for Oil Storage.
  2. ACI=American Concrete Institute(2006).ACI 350-06 Code Requirements for Environmental Engineering Concrete Structures and Commentary.
  3. ACI=American Concrete Institute(2006).ACI 350.3-06 Seismic Design of LiquidContaining Concrete Structures and Commentary.
  4. American Society of Civil Engineers=ASCE(2010).Minimum Design Loads for Buildings and Other Structures.Reston, VA.:ASCE.
  5. ASCE=American Society of Civil Engineers(1984).Guidelines for the Seismic Design of Oil and Gas Pipeline Systems.
  6. Beskos(ed.),Anagnostopoulos(ed.)(1997).Computer Analysis and Design of Earthquake Resistant Structures.Computational Mechanics Publications.
  7. Billings, I.,Charman, N.(2012).Christchurch City Lifelines – Assessment and Repair of Concrete Potable Water Reservoirs Following the February and June 2011 Christchurch Earthquakes.Proc. Int. Symp. Engineering Lessons Learned from 2011 Great East Japan Earthquake
  8. Haroun, M. A.,Housner, G. W.(1981).Seismic Design of Liquid Storage Tanks.Journal of the Technical Councils of ASCE,107(TC1),191-207.
  9. Housner, G. W.(1963).Technical Information Document (TID)Technical Information Document (TID),U.S. Atomic Energy Commission.
  10. International Code Council=ICC(2012).International Building Code.Falls Church, VA.:
  11. Mononobe N. and Matsuo H., 1929, “On the determination of earth pressures during earthquakes,” in Proceedings of the World Engineering Congress, p. 9, Tokyo, Japan.
  12. NZSEE=New Zealand Society for Earthquake Engineering(2009).Seismic Design of Storage Tanks: 2009.
  13. Okabe, S.,1926,“General theory on earth pressure and seismic stability of retaining walls and dams,” Journal of the Japanese Society of Civil Engineering, 12, 311.
  14. 中國土木水利工程學會(2011).混凝土工程設計規範與解說(土木 401-100).台北:
  15. 中華民國自來水協會(2013).自來水設施耐震設計指南及解說.台北:
  16. 內政部,2012,「建築物耐震設計規範及解說」修正版。
  17. 內政部,2001,「建築物基礎構造設計規範」。
  18. 日本水道技術研究中心(1997)。阪神.淡路大震災と水道
  19. 日本水道協會(2009)。水道施設耐震工法指針‧解說
  20. 日本厚生勞動省(2013)。東日本大震災水道施設被害状況調査最終報告書
  21. 葉純松(2002)。921 地震大臺中地區供水危機處理。都市防救災研討會論文集,臺北:
  22. 鍾立來,葉錦勳,劉季宇,翁元滔,林敏郎,邱聰智,李昭賢,沈文成(2017)。台灣自來水公司成果報告台灣自來水公司成果報告,未出版