题名

中高層結構物微振量測之最佳感測器配置

并列篇名

Optimal Sensors Placement for Micro-Vibration Monitoring of Mid-High Rise Building

DOI

10.6849/SE.202112_36(4).0005

作者

楊晏瑜(Yen-Yu Yang);呂良正(Leng-Jenq Leu)

关键词

最佳化感測器配置 ; 結構健康監測或檢測 ; 隨機子空間識別 ; 系統識別 ; 三次樣條內插法 ; Optimal Sensors Placement ; Structural Health Monitoring ; Stochastic Subspace Identification ; Cubic Spline Interpolation

期刊名称

結構工程

卷期/出版年月

36卷4期(2021 / 12 / 01)

页次

116 - 137

内容语文

繁體中文

中文摘要

台灣位屬多地震區域,由於地震頻繁,為了結構物之安全性,需於災害發生前與災害發生後進行結構物健康識別。本研究所提出之最佳化配置為減少往後檢測量測同棟中高層結構物所設置之感測器顆數,及提高判斷結構物模態頻率的精度。為此目的,需先求得結構物之參考模態頻率;首先在結構物上設置參考感測器獲得真實時間歷時,並利用Cubic spline內插法取得模擬時間歷時,得到結構物各樓層真實與模擬時間歷時後,運用隨機子空間識別(SSI),做出穩態圖,使用機器學習中的K-means演算法判斷穩態圖上之各參考模態頻率,最後基因演算法判斷出加速度感測器配置之最佳樓層位置。最後做了四棟真實結構物之實驗以驗證此方法的可行性。

英文摘要

Taiwan is located in the seismic zone with high frequency earthquake occurrences. In order to increase structure safety, it needs to monitor the structural health before and after disaster occurs. This study proposes a method to obtain the optimal sensors placement(OSP), which could reduce the number of sensors for building monitoring. In additions, the method could find out the higher modal frequencies for structures. First, collect the real time-histories and use Cubic spline interpolation method to obtain simulated time-histories for each floor. Second, use Stochastic Subspace Identification to generate stabilization diagrams. Third, K-means clustering method is used to obtain modal frequencies. Finally, use Genetic Algorithm method to find OSP. There are four in-situ experiments for the method verifying, one is in National Taiwan University Cancer Center, one in Tamsui(a new building) and others are 5 years buildings in Banqiao.

主题分类 工程學 > 工程學總論
工程學 > 土木與建築工程
参考文献
  1. Guo, H. Y.,Zhang, L.,Zhang, L. L.,Zhou, J. X.(2004).Optimal placement of sensors for structural health monitoring using improved genetic algorithms.Smart Materials and Structures,13,528-534.
  2. Holland, J. H.(1975).Adaptation in Natural and Artificial Systems.USA:University of Michigan Press.
  3. Kammer, D. C.(1991).Sensor placement for on-orbit modal identification and correlation of large space structures.Journal of Guidance, Control, and Dynamics,14(2),251-259.
  4. Kodera, K.,Nishitani, A.,Okihara, Y.(2018).Cubic spline interpolation based estimation of all story seismic response with acceleration measurement at a limited number of floors.Journal of Structural and Construction Engineering (Transactions of AIJ),83,527-535.
  5. Limongelli, M. P.(2003).Optimal location of sensors for reconstruction of seismic responses through spline function interpolation.Earthquake engineering structural dynamics,32,1055-1074.
  6. Limongelli, M. P.(2004).Modeling of unknown seismic responses of partially instrumented bridge structure.The 13th World Conference on Earthquake Engineering,Vancouver, B.C., Canada:
  7. MacQueen, J. B.(1967).Some Methods for classification and Analysis of Multivariate Observations.Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability,Berkeley CA:
  8. Meo, M.,Zumpano, G.(2005).On the optimal sensor placement techniques for a bridge structure.Engineering Structures,27,1488-1497.
  9. Van Overschee, P.,De. Moor, B.(1996).Subspace Identification for Linear Systems Theory — Implementation — Applications.Dordrecht:Katholieke University Leuven.
  10. 羅俊雄,郭采蓉,林沛暘,江宏偉,林云媚(2018)。國家地震研究中心技術報告國家地震研究中心技術報告,台北:國家地震研究中心。