题名

建立臺灣普通及摻料混凝土強度及彈性模數時間成長函數研究

并列篇名

Establishment of Time Dependent Functions for Ordinary and Pozzolanic Concrete Compressive Strength and Modulus of Elasticity in Taiwan

DOI

10.6849/SE.202203_37(1).0002

作者

王映捷(Ying-Chieh Wang);廖文正(Wen-Cheng Liao)

关键词

飛灰 ; 爐石 ; 強度 ; 彈性模數 ; 時間函數 ; fly ash ; slag ; strength ; elastic modulus ; time function

期刊名称

結構工程

卷期/出版年月

37卷1期(2022 / 03 / 01)

页次

25 - 49

内容语文

繁體中文

中文摘要

混凝土是由粒料、水泥、礦物摻料、水等材料,依配比設計產生之複合材料;又混凝土結構物之生命週期需考量安全性及長期服務性,其硬固後體積會受外力作用而變化,如因環境乾燥所產生的收縮、受持續載重產生潛變等現象,皆會影響結構物之長期行為。混凝土彈性模數受組成材料等因素影響甚鉅,彈性模數的增長也會直接影響收縮潛變的評估,但因為各地所使用之組成材料不甚相同,因此有臺灣本土化之預測模型是非常重要的。目前臺灣已經有本土化之收縮潛變模型,但缺乏混凝土強度及彈性模數之時間函數。有鑑於彈性模數、強度在工程應用上的重要性,以及近年來添加飛灰、水淬高爐爐碴粉等摻料混凝土被廣泛使用,因此本研究將從臺灣混凝土收縮潛變資料庫出發,以7種不同水灰比之普通混凝土及固定水膠比為0.42之6種飛灰、爐石取代量之摻料混凝土,分別配合3、7、14、28、56、91、180天的齡期,進行抗壓及彈性模數試驗,提出普通混凝土之強度及彈性模數預測式及時間成長函數,再進一步修正摻料混凝土之相關模型,除了可供修正臺灣本土化收縮潛變模型外,也能提供工程界預測使用。

英文摘要

Concrete is a widely used construction material composed of aggregate, cement, water, mineral admixture in a specific proportion. Not only safety, long-term serviceability is also the main consideration for buildings and infrastructures made of concrete. The volume of concrete changes over time, such as shrinkage and creep, and all the above influence the long-term serviceability. The elastic modulus of concrete, mainly determined by composition of concrete, directly affects shrinkage and creep behaviors of concrete. However, because materials vary from different resources, a localized prediction model is essential to account for characteristics of concrete in Taiwan and this specific prediction model shall involve localized time function of strength and elastic modulus as well. In view of the importance of elastic modulus and strength in practical applications, and in recent years, the addition of fly ash and water-quenched blast furnace slag in concrete has been widely used, so this research also investigates the shrinkage and creep test data from the database. A comprehensive experimental program, including compression and elastic modulus tests for seven different water-to-cement ratios of ordinary concrete and six different fly ash and slag replacement ratios of water-to-binder ratio of 0.42 for 3, 7, 14, 28, 56, 91 and 180 days, were conducted. The prediction models of time function for strength and elastic modulus for ordinary and fly ash/slag concrete in Taiwan are proposed for further modification of shrinkage and creep model and practical applications.

主题分类 工程學 > 工程學總論
工程學 > 土木與建築工程
参考文献
  1. 胡瑋秀(2018)。國立臺灣大學土木工程學研究所。
    連結:
  2. 黃禾程(2020)。國立臺灣大學工學院土木工程學研究所。
    連結:
  3. 廖文正,林致淳,詹穎雯(2016)。臺灣混凝土彈性模數建議公式研究。結構工程,31(3)
    連結:
  4. 廖文正,林致淳,詹穎雯(2016)。臺灣混凝土彈性模數建議公式研究。結構工程,31(3)
    連結:
  5. (1991).CEB-FIP Model Code 1990, Final Draft, CEB Bulletind’Information, No.203, pp.2.27-2.38, pp.2.43-2.49,1991.
  6. ACI(2014).318-14: Building Code Requirements for Structural Concrete and Commentary.
  7. ACI(1997).ACI Manual of Concrete Practice, Part 1, Materials and General Properties of Concrete.
  8. Bolomey J.G., “Aggregate grading and prediction of concrete strength,” Travaux, No. 30, pp. 228-232, 1935
  9. CSA=Canadian Standards Association(2004).CSA (Canadian Standards Association), ” CSA-A23.3-04: Design of concrete structures. CSA”, Mississauga, ON, Canada, 2004.
  10. de Brito, Jorge,Kurda, Rawaz,da Silva, Pedro Raposeiro(2018).Can We Truly Predict the Compressive Strength of Concrete without Knowing the Properties of Aggregates?.Appl. Sci.
  11. Han, S.H.,Kim, J.K.,Park, Y.D.(2003).Prediction of compressive strength of fly ash concrete by new apparent activation energy function.Cement and Concrete Research,33(7),965-971.
  12. JSCE(2007).Standard specifications for concrete structures –2007Design.
  13. Khan, M.I.(2008).Riyadh, Kingdom of Saudi Arabia,Department of Civil Engineering, King Saud University.
  14. Larrard, F.(1994).Optimization of ultra-high-performance concrete by the use of a packing model.Cement and Concrete Research,24(6),997-1009.
  15. Martinez, S.,Nilson, A. H.,Slate, EO.(1982).Spirally-Reinforced High-Strength Concrete Columns.Ithaca, New York:Structural Engineering Department, Comell Univ..
  16. Papadakis, V.G.,Tsimas, S.(2002).Supplementary cementing materials in concrete Part I: efficiency and design.Cement and Concrete Research,32(10),1525-1532.
  17. Rajamane, N.P.,Peter, J.A.,Ambily, P.S.(2007).Prediction of compressive strength of concrete with fly ash as sand replacement material.Cement and Concrete Research,29(3),218-223.
  18. Sear, L.K.A.,Dews, J.,Kite, B.,Harris, F.C.,Troy, J.F.(1995).Abrams law, air and high water-to-cement ratios.Construction and Building Materials,10(3)
  19. Valente, M.,Vigneri, M.,Bressan, M,Pasqualini, A.,Bianchini, S.,Liberatore, F.M.(2010).Use of fly ash concrete: efficiency factors of the supplementary cementing material.Proceedings of the Second International Conference on Sustainable Construction Materials and Technologies,Ancona, Italy:
  20. Wang, Dehuai,Chen, Zhaoyuan(1997).On Predicting Compressive Strengths of Mortars with Ternary Blends of Cement, GGBFS and Fly ash.Cement and Concrete Research,27(4),487-493.
  21. 中國土木水利工程學會(2011).混凝土工程設計規範與解說.台北:科技圖書.
  22. 中華民國結構工程學會,中華民國地震工程學會,國家地震工程研究中心(2017).高強度鋼筋混凝土結構建築設計指南.台北:科技圖書.
  23. 行政院公共工程委員會(2001).公共工程高爐石混凝土使用手冊.
  24. 行政院公共工程委員會(1999).公共工程飛灰混凝土使用手冊.
  25. 行政院公共工程委員會(2001)。行政院公共工程委員會, 混凝土基本材料及施工一般要求, 2001。
  26. 陸景文,詹穎雯,陳振川(2004)。臺灣地區混凝土抗壓強度與彈性模數特性研究。中國土木水利工程學會學刊,14(3),371-379。
  27. 鄭安順(2011)。台中,國立中興大學土木工程研究所。