题名

地震超材料的隔減震技術

并列篇名

A Review of Seismic Metamaterials for Seismic Protection

DOI

10.6849/SE.202209_37(3).0004

作者

蘇于琪;汪向榮;張文忠;林子剛;林正洪;吳東諭;張國鎮;陳東陽

关键词

地震超材料 ; 地震波 ; 局部共振 ; 週期性結構 ; 波動力學 ; seismic metamaterial ; seismic waves ; local resonance ; periodic structure ; wave propagation

期刊名称

結構工程

卷期/出版年月

37卷3期(2022 / 09 / 01)

页次

66 - 80

内容语文

繁體中文

中文摘要

地震工程發展日新月異,然而目前許多有效的隔減震技術,如加強結構本身的強度與韌性、於結構底部安裝隔震系統、利用消能元件吸收地震能量等,皆僅針對單一結構進行嵌入式安裝,這對於老舊且急需耐震補強建築繁多的臺灣,可能無法兼顧合理成本與時間效益的考量。近五年全球開始發展以波傳與複合材料角度切入的地震超材料研究,其不直接接觸結構物本體,轉而思考於保護區域外圍建立屏障,使特定頻段的地震波產生衰減或轉向,進而有效保護既有且大範圍的社區。考慮臺灣地震頻繁、老舊大樓及基礎設施眾多,以及缺乏地震超材料的本土性相關研究,本文通訊作者組成跨領域研究團隊,並於2021年起在科技部補助下開始執行三年期整合型計畫「地震超材料結構的隔減振屏蔽:理論架構、數值模擬及實驗」。本文除回顧國外地震超材料之研究發展外,亦簡介整合型計畫的前期研究與整合現況,並提出未來可能的發展方向與策略,以期提供工程與研究人員關於隔減震的另一思維。

英文摘要

Current seismic-resistant technologies include enhancement of structural strength and ductility, application of isolation systems, and adoption of energy dissipation devises. These approaches target a single building and integrate isolation and damping devices. In the area with significant numbers of aging buildings like Taiwan, retrofitting existing infrastructure with traditional methods may not be a pragmatic solution. Seismic metamaterials have emerged as a state-of-the-art research topic in the last decade. They block or deflect waves by forming a seismic shield outside the area around existing structures without direct contact with the actual buildings. The seismic metamaterials are able to complement the techniques used in current earthquake engineering; however, domestic study on this subject is limited. Therefore, Professor Tungyang Chen assembled an interdisciplinary team to conduct the 3-year integrated project titled "Seismic Metamaterials towards Cloaking Earthquakes: Theoretical Framework, Numerical Modelling and Experimental Verifications", under the support of the Ministry of Science and Technology, Taiwan since 2021. This review article includes literature review on seismic metamaterials, current progress in Taiwan, and future work. The study introduces the insights of seismic metamaterials for engineers and researchers, and aims to provide alternatives from seismic isolation and energy dissipation.

主题分类 工程學 > 工程學總論
工程學 > 土木與建築工程
参考文献
  1. 吳逸軒,汪向榮,張國鎮,陳東陽(2019)。多類型複合地震超結構之寬頻帶設計與分析。中國土木水利工程學刊,31,103-118。
    連結:
  2. 李冠慧,汪向榮,蘇于琪,游忠翰,張國鎮,陳東陽(2020)。地震超材料設計之減震分析及效益評估。中國土木水利工程學刊,32,597-607。
    連結:
  3. 簡廷宇,黃瑜琛,吳逸軒,李冠慧,翁崇寧,陳東陽(2019)。新型態外部減震技術─地震超材料之設計與分析。中國土木水利工程學刊,31,395-410。
    連結:
  4. 台灣地震科學系統。https://tesis.earth.sinica.edu.tw/new/
  5. Achaoui, Y.,Ungureanu, B.,Enoch, S.,Brûlé, S.,Guenneau, S.(2016).Seismic waves damping with arrays of inertial resonators.Extreme Mechanics Letters,8,30-37.
  6. Avilés, J.,Sánchez-Sesma, J.(1983).Piles as barriers for elastic waves.Journal of the Geotechnical Engineering Division,109,1133-1146.
  7. Brûlé, S.,Javelaud, E.H.,Enoch, S.,Guenneau, S.(2014).Experiments on seismic metamaterials: molding surface waves.Physical Review Letters,112,133901.
  8. Brûlé, S.,Javelaud, E.H.,Enoch, S.,Guenneau, S.(2017).Flat lens effect on seismic waves propagation in the subsoil.Scientific Reports,7,18066.
  9. Brûlé, S.,Ungureanu, B.,Achaoui, Y.,Diatta, A.,Aznavourian, R.,Antonakakis, T.,Craster, R.,Enoch, S.,Guenneau, S.(2017).Metamaterial-like transformed urbanism.Innovative Infrastructure Solutions,2,20.
  10. Chen, Y.,Qian, F.,Scarpa, F.,Zuo, L.,Zhuang, X.(2019).Harnessing multi-layered soil to design seismic metamaterials with ultralow frequency band gaps.Materials and Design,175,107813.
  11. Colombi, A.,Colquitt, D.,Roux, P.,Guenneau, S.,Craster, R.V.(2016).A seismic metamaterial: the resonant metawedge.Scientific Reports,6,27717.
  12. Colombi, A.,Craster, R.V.,Colquitt, D.,Achaoui, Y.,Guenneau, S.,Roux, P.,Rupin, M.(2017).Elastic wave control beyond band-gaps: shaping the flow of waves in plates and half-spaces with subwavelength resonant rods.Frontiers in Mechanical Engineering,3,10.
  13. Colombi, A.,Roux, P.,Gueneau, S.,Gueguen, P.,Craster, R.V.(2016).Forests as a natural seismic metamaterial: Rayleigh wave band gaps induced by local resonances.Scientific Reports,6,19238.
  14. Du, Q.,Zeng, Y.,Huang, G.,Yang, H.(2017).Elastic metamaterial-based seismic shield for both Lamb and surface waves.AIP Advances,7,075015.
  15. Du, Q.,Zeng, Y.,Xu, Y.,Yang, H.,Zeng, Z.(2018).H-fractal seismic metamaterial with broadband low-frequency bandgaps.Journal of Physics D: Applied Physics,51,105104.
  16. Fang, N.,Xi, D.,Xu, J.,Ambati, M.,Srituravanich, W.,Sun, C.,Zhang, X.(2006).Ultrasonic metamaterials with negative modulus.Nature Materials,5,452-456.
  17. Finocchio, G.,Casablanca, O.,Ricciardi, G.,Alibrandi, U.,Garescì, F.,Chiappini, M.,Azzerboni, B.(2014).Seismic metamaterials based on isochronous mechanical oscillators.Applied Physics Letters,104,191903.
  18. Gao, G. Y.,Li, Z.Y.,Qiu, C.h.,Yue, Z.Q.(2006).Three-dimensional analysis of rows of piles as passive barriers for ground vibration isolation.Soil Dynamics and Earthquake Engineering,26,1015-1027.
  19. Geng, Q.,Zhu, S.,Chong, K.P.(2018).Issues in design of one-dimensional metamaterials for seismic protection.Soil Dynamics and Earthquake Engineering,107,264-278.
  20. Huang, H.H.,Sun, C.T.(2011).Theoretical investigation of the behavior of an acoustic metamaterial with extreme young’s modulus.Journal of the Mechanics and Physics of Solids,59,2070-2081.
  21. Huang, J.,Shi, Z.(2013).Application of periodic theory to rows of piles for horizontal vibration attenuation.International Journal of Geomechanics,13,132-142.
  22. Hussein, M.I.,Leamy, M.J.,Ruzzene, M.(2014).Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook.Applied Mechanics Reviews,66,040802.
  23. Ji, D.,Yu, G.(2021).Shielding performance of T-shaped periodic barrier for surface waves in transversely isotropic soil.Journal of Materials: Design and Application,0,1-13.
  24. Joannopoulos, J.D.,Villeneuve, P.R.,Fan, S.(1997).Photonic crystals: putting a new twist on light.Nature,386,143-149.
  25. Kattis, S.E.,Polyzos, D.,Beskos, D. E.(1999).Modelling of pile wave barriers by effective trenches and their screening effectiveness.Soil Dynamics and Earthquake Engineering,18,1-10.
  26. Krödel, S.,Thomé, N.,Daraio, C.(2015).Wide band-gap seismic metastructures.Extreme Mechanics Letters,4,111-117.
  27. Lai, Y.,Wu, Y.,Sheng, P.,Zhang, Z.Q.(2011).Hybrid elastic solids.Nature Materials,10,620-624.
  28. Li, L.,Jia, Q.,Tong, M.,Li, P.,Zhang, X.(2021).Radial seismic metamaterials with ultra-low frequency broadband characteristics.Journal of Physics D: Applied Physics,54,505104.
  29. Liu, X.N.,Hu, G.K.,Huang, G.L.,Sun, C.T.(2011).An elastic metamaterial with simultaneously negative mass density and bulk modulus.Applied Physics Letters,98,251907.
  30. Liu, Y.,Huang, J.,Li, Y.,Shi, Z.(2019).Trees as large-scale natural metamaterials for low-frequency vibration reduction.Construction and Building Materials,199,737-745.
  31. Liu, Z.,Qin, K.,Yu, G.(2020).Partially embedded gradient metabarrier: broadband shielding from seismic Rayleigh waves at ultralow frequencies.Journal of Engineering Mechanics,146,04020032.
  32. Liu, Z.,Zhang, X.,Mao, Y.,Zhu, Y.,Yang, Z.,Chan, C.T,Sheng, P.(2000).Locally resonant sonic materials.Science,289,1734-1736.
  33. Maleki, M.,Khodakarami, M.I.(2017).Feasibility analysis of using MetaSoil scatterers on the attenuation of seismic amplification in a site with triangular hill due to SV-waves.Soil Dynamics and Earthquake Engineering,100,169-182.
  34. Meseguer, F.,Holgado, M.,Caballero, D.,Benaches, N.,Sánchez-Dehesa, J.,López, C.,Llinares, J.(1999).Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal.Physical Review B,59,12169.
  35. Miniaci, M.,Krushynska, A.,Bosia, F.,Pugno, N.M.(2016).Large scale mechanical metamaterials as seismic shields.New Journal of Physics,18,083041.
  36. Muhammad,Lim, C.W.,Reddy, J.N.(2019).Built-up structural steel sections as seismic metamaterials for surface wave attenuation with low frequency wide bandgap in layered soil medium.Engineering Structures,188,440-451.
  37. Oudich, M.,Djafari-Rouhani, B.,Pennec, Y.,Assouar, M.B.,Bonello, B.(2014).Negative effective mass density of acoustic metamaterial plate decorated with low frequency resonant pillars.Journal of Applied Physics,116,184504.
  38. Oudich, M.,Li, Y.,Assouar, B.M.,Hou, Z.(2010).A sonic band gap based on the locally resonant phononic plates with stubs.New Journal of Physics,12,083049.
  39. Palermo, A.,Krödel, S.,Marzani, A.,Daraio, C.(2016).Engineered metabarrier as shield from seismic surface waves.Scientific Reports,6,39356.
  40. Richart, F.E.,Hall, J.R.,Woods, R.D.(1970).Vibrations of soils and foundations.Englewood Cliffs, New Jersey:Prentice-Hall.
  41. Varma, T.,Ungureanu, B.,Sarkar, S.,Craster, R.,Guenneau, S.,Brûlé, S.(2021).The influence of clamping, structure geometry, and material on seismic metamaterial performance.Frontiers in Materials,8,603820.
  42. Wang, X.(2014).Dynamic behaviour of a metamaterial system with negative mass and modulus.International Journal of Solids and Structures,51,1534-1541.
  43. Wu, Y.,Lai, Y.,Zhang, Z.Q.(2011).Elastic metamaterials with simultaneously negative effective shear modulus and mass density.Physical Review Letters,107,105506.
  44. Xu, Y.,Xu, R.,Peng, P.,Yang, H.,Zeng, Y.,Du, Q.(2019).Broadband H-shaped seismic metamaterial with a rubber coating.EPL,127,17002.
  45. Yablonovitch, E.(1987).Inhibited spontaneous emission in solid-state physics and electronics.Physical Review Letters,58,2059.
  46. Yablonovitch, E.(2001).Photonic crystals: semiconductors of light.Scientific American,285,46-55.
  47. Yang, Z.,Mei, J.,Yang, M.,Chan, N. H.,Sheng, P.(2008).Membrane-type acoustic metamaterial with negative dynamic mass.Physical Review Letters,101,204301.
  48. Zeng, Y.,Xu, Y.,Deng, K.,Peng, P.,Yang, H.,Muzamil, M.,Du, Q.(2019).A broadband seismic metamaterial plate with simple structure and easy realization.Journal of Applied Physics,125,224901.
  49. Zeng, Y.,Xu, Y.,Deng, K.,Zeng, Z.,Yang, H.,Muzamil, M.,Du, Q.(2018).Low-frequency broadband seismic metamaterial using I-shaped pillars in a half-space.Journal of Applied Physics,123,214901.
  50. Zeng, Y.,Xu, Y.,Yang, H.,Muzamil, M.,Xu, R.,Deng, K.,Peng, P.,Du, Q.(2020).A Matryoshka-like seismic metamaterial with wide band-gap characteristics.International Journal of Solids and Structures,185–186,334-341.
  51. Zeng, Y.,Zhang, S.Y.,Zhou, H.T.,Wang, Y.F.,Cao, L.,Zhu, Y.,Du, Q.J.,Assouar, B.,Wang, Y.S.(2021).Broadband inverted T-shaped seismic metamaterial.Materials & Design,208,109906.
  52. Zhang, K.,Luo, J.,Hong, F.,Deng, Z.(2021).Seismic metamaterials with cross-like and square steel sections for low-frequency wide band gaps.Engineering Structures,232,111870.
  53. Zhou, X.,Hu, G.K.(2009).Analytic model of elastic metamaterials with local resonances.Physical Review B,79,195109.
  54. Zhu, R.,Liu, X.N.,Hu, G.K.,Sun, C.T.,Huang, G.L.(2014).Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial.Nature Communications,5,5510.
被引用次数
  1. 蘇于琪,王聖翔(2023)。消波塊型地震超材料設計及減震效果模擬分析。土木水利,50(4),51-57。