题名

含挫屈束制支撐外伸臂系統耐震性能分析與設計

并列篇名

Seismic performance and design of high-rise building incorporating buckling-restrained brace outrigger system

DOI

10.6849/SE.202306_38(2).0005

作者

蔡守榕(Shou-June Tsai);林保均(Pao-Chun Lin)

关键词

高樓層結構 ; 外伸臂桁架系統 ; 挫屈束制支撐 ; 非線性反應譜分析 ; 非線性動力歷時分析

期刊名称

結構工程

卷期/出版年月

38卷2期(2023 / 06 / 01)

页次

107 - 137

内容语文

繁體中文;英文

中文摘要

此研究主要目的為進行含阻尼器外伸臂系統結構最佳化設計與探討高樓層建築之耐震性能,重點為利用外伸臂桁架系統以降低結構物之受震反應。相較於傳統型外伸臂,特別對加裝阻尼器之外伸臂系統結構進行探討,藉由阻尼器以增加結構物阻尼比達到消能效果。而此研究所使用阻尼器為挫屈束制支撐(buckling-restrained brace, BRB),因BRB具有良好的軸拉與軸壓力發展強度,受壓時無須考量挫屈問題與良好的消能行為,故將其特殊的力學行為加入外伸臂桁架系統中,預期在小地震下因較大的彈性勁度以及面臨大地震時透過BRB的能量消散機制以減緩結構物受震反應。此研究利用OpenSees軟體建立二維分析模型,主要以配置兩組外伸臂系統做為探討目標,並將分析模型加以簡化,分別建立四種不同樓高之72、144、216、288m之簡化模型,為了參數研究的目的,簡化模型使用Timoshenko beamcolumn element,以便模擬出模型從低到高,由剪力到撓曲變形的行為。分析方法主要藉由非線性反應譜分析(Response spectral analysis, RSA)進行多種結構參數組合之參數分析,包含不同的外伸臂高程及BRB與外周柱的勁度比例,且參數值皆有一定的限制,以貼近實務上的設計。並以非線性歷時分析(Nonlinear response history analysis, NLRHA)驗證其受震反應結果。探討不同樓高含阻尼器外伸臂桁架系統,滿足不同最佳化目標包括最大頂層側位移角、層間側位移角、核心結構基底剪力、核心結構傾覆彎矩和BRB消能表現,最佳設計時結構參數的組合。

英文摘要

The keen purpose of this study is to investigate the seismic performance of buildings equipped with damped-outrigger system using the buckling-restrained brace (BRB) system (BRB-outrigger) and to propose the optimal design recommendation for buildings with a different height. The numerical models with building heights of 72, 144, 216 and 288m, each contains two layers of BRB-outrigger and a 40m by 40m structural plan are analyzed using response spectral analysis (RSA) and nonlinear response history analysis (NLRHA) procedures. To get more closer to the actual reality, the member-by-member benchmark models are designed based on the seismic code requirement. In the response spectral analysis procedure, the equivalent damping ratio is computed in order to include the BRB's inelastic response. For the main purpose of parametric study, a simplified model which will be using a Timoshenko beamcolumn element in order to capture shear-type to flexural-type lateral deformation for a lower to higher raising buildings are proposed. The dimensionless parameters that actually describe the relationships between the core structure stiffness, outrigger flexural stiffness, the axial stiffness of BRB and perimeter column in the parameter study are considered based on practical design and allowable structural sections. The optimization targets include the maximum roof drift, inter-story drift ratio, core structure base shear, core structure overturning moment and the BRB energy dissipation performance. Based on the analyzed result, the ranges of optimal design parameters vary in the different optimization targets and building heights. This study concludes with a design recommendation for building equipped with BRB-outrigger system with different building heights.

主题分类 工程學 > 工程學總論
工程學 > 土木與建築工程
参考文献
  1. (2016).Seismic isolation and vibration control structure design. Tokyo: Architecture Institute Japan, Kanto branch, 2016..
  2. (2016).ANSI/AISC 341-16, Seismic Provisions for Structural Steel Buildings. 2016..
  3. AISC=American Institute of Steel Construction(2016).AISC (American Institute of Steel Construction), “Specifications for Structural Steel Buildings, ANSI-AISC 360-16,” in AISC (American Institute of Steel Construction), 2016..
  4. Ali, M. M.,Moon, K. S.(2007).Structural Developments in Tall Buildings: Current Trends and Future Prospects.Archit. Sci. Rev.,50(3),205-223.
  5. Anon(2000).Minimum design loads for buildings and other structures.ANSI.
  6. Asai, T.,Terazawa, Y.,Miyazaki, T.,Lin, P. C.,Takeuchi, T.(2021).First mode damping ratio oriented optimal design procedure for damped outrigger systems with additional linear viscous dampers.Eng. Struct.
  7. ASCE(2016).Minimum design loads for buildings and other structures, ASCE 7-16.
  8. Chen, Y.,McFarland, D. M.,Wang, Z.,Spencer, B. F.,Bergman, L. A.(2010).Analysis of Tall Buildings with Damped Outriggers.J. Struct. Eng.
  9. Chopra, A. K.,Goel, R. K.(2002).A modal pushover analysis procedure for estimating seismic demands for buildings.Earthq. Eng. Struct. Dyn.
  10. Chopra, A. K.,Goel, R. K.(2004).A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings.Earthquake Engineering and Structural Dynamics,33(8),903-924.
  11. Fang, C.,Spencer, B. F,Xu, J.,Tan, P.,Zhou, F.(2019).Optimization of damped outrigger systems subject to stochastic excitation.Eng. Struct.
  12. Habrah, A.,Batikha, M.,Vasdravellis, G.(2022).An analytical optimization study on the core-outrigger system for efficient design of tall buildings under static lateral loads.J. Build. Eng.
  13. Huang, B.,Takeuchi, T.(2017).Dynamic response evaluation of damped-outrigger systems with various heights.Earthq. Spectra
  14. Kasai, K.,Fu, Y.,Watanabe, A.(1998).Passive Control Systems for Seismic Damage Mitigation.J. Struct. Eng.,124(5),501-512.
  15. Lin, P. C.,Takeuchi, T.,Matsui, R.(2018).Seismic performance evaluation of single damped-outrigger system incorporating buckling-restrained braces.Earthquake Engineering and Structural Dynamics,47(12),2343-2365.
  16. Lin, P. C.,Takeuchi, T.,Matsui, R.(2019).Optimal design of multiple damped-outrigger system incorporating buckling-restrained braces.Eng. Struct.
  17. Lin, P.,Takeuchi, T.(2019).Seismic performance of buckling‐restrained brace outrigger system in various configurations.Japan Archit. Rev.,2(4),392-408.
  18. McKenna, F.(1997).Berkeley,Philosophy in Engineering-Civil Engineering in the GRADUATE DIVISION, University of California.
  19. Miranda, E.(1999).Approximate seismic lateral deformation demands in multistory buildings.J. Struct. Eng.
  20. Morales-Beltran, M.,Turan, G.,Dursun, O.,Nijsse, R.(2018).Energy dissipation and performance assessment of double damped outriggers in tall buildings under strong earthquakes.Struct. Des. Tall Spec. Build.
  21. Morales-Beltran, M.,Turan, G.,Yildirim, U.,Paul, J.(2018).Distribution of strong earthquake input energy in tall buildings equipped with damped outriggers.Struct. Des. Tall Spec. Build.
  22. Smith, R. J.,Willford, M. R.(2007).The damped outrigger concept for tall buildings.Struct. Des. Tall Spec. Build.
  23. Smith, S.,Salim, I.(1981).Parameter Study of Outrigger-Braced Tall Building Structures.J. Struct. Div.
  24. Somerville, P.,Venture, S.(1997).Development of ground motion time histories for phase 2 of the FEMA/SAC steel project.Pacific Gas Electr. Co..
  25. Tan, P.,Fang, C.,Zhou, F.(2014).Dynamic characteristics of a novel damped outrigger system.Earthq. Eng. Eng. Vib.,13(2),293-304.
  26. Tsai, K. C.,Wu, A. C.,Wei, C.Y.,Lin, P.C.,Chuang, M.C.,Yu, Y.-J.(2014).Welded end-slot connection and debonding layers for buckling-restrained braces.Earthq. Eng. Struct. Dyn.,43(12)
  27. Viise, J.,Ragan, P.,Swanson, J.(2014).BRB and FVD alternatives to conventional steel brace outriggers.CTBUH 2014 Shanghai Conference
  28. Watanabe, A.,Hitomi, Y.,Saeki, E.,Wada, A.,Fujimoto, M.(1988).Properties of brace encased in buckling-restraining concrete and steel tube.Proc. 9th world Conf. Earthq. Eng.
  29. Xu, J.,Spencer, B. F.,Lu, X.,Chen, X.,Lu, L.(2017).Optimization of Structures Subject to Stochastic Dynamic Loading.Comput. Civ. Infrastruct. Eng.
  30. 吳安傑,林保均,莊明介,蔡克銓(2015)。挫屈束制支撐構架設計概要與工程應用。結構工程,30(1),11-33。