题名

使用高強度撓曲鋼筋之低軸壓鋼筋混凝土柱振動台試驗

并列篇名

Shaking Table Test of RC Columns Using High-Strength Flexural Reinforcement with Low Axial Load

DOI

10.6849/SE.202309_38(3).0004

作者

金芷萱(Chih-Hsuan Chin);顏舜邦(Shun-Bang Yan);鄭敏元(Min-Yuan Cheng )

关键词

振動台 ; 變形量 ; 勁度 ; 高強度鋼筋 ; shaking table ; drift ; stiffness ; high-strength reinforcement

期刊名称

結構工程

卷期/出版年月

38卷3期(2023 / 09 / 01)

页次

85 - 93

内容语文

繁體中文;英文

中文摘要

本研究探討使用高強度撓曲鋼筋之鋼筋凝土柱在低軸壓下之振動台試驗反應(試體頂部混凝土塊自重提供柱軸壓約0.1A_gf_c^',其中A_g與f_c^'分別代表柱斷面面積與混凝土材料強度),總共測試兩組鋼筋混凝土構架試體,每組試體均包含一個混凝土底座、兩支淨高除以斷面高度超過12的柱、以及一個頂部混凝土塊。兩組構架試體先於振動台上完成十六組地震歷時測試;接著移至反力牆區完成靜態試驗。試體C1使用普通強度撓曲鋼筋(鋼筋降伏強度453 MPa)、試體H1使用高強度撓曲鋼筋(鋼筋降伏強度716 MPa),兩組試體以發展相同標稱撓曲強度作設計,所有設計參數均一致僅撓曲鋼筋量與強度不同。動力試驗結果顯示試體H1在所有十六組地震歷時下所得最大變形量均大於試體C1,兩試體最大變形量比介於1.3~2.4之間,在主筋降伏前,兩試體側向勁度隨著最大變形量增加而遞減,而試體H1具有較低的側向勁度與阻尼比;當試體進入非線性反應後,兩試體最大強度接近,分析結果顯示Shimazaki與Sozen模型可用以評估試體C1非線性最大位移評估的上限值,但該模型所得結果對試體H1並不保守。靜態試驗結果顯示(反力牆區)兩試體均能維持其最大撓曲強度達層間位移角10%,試體C1柱底在測試完後有嚴重混凝土剝落情況,試體H1除了柱底混凝土剝落外,其中一支柱底的兩支主筋在層間位移角10%第二個迴圈加載過程中斷裂,一般而言,試體C1在不同層間位移角的正規化能量消散能力大於試體H1。

英文摘要

Shaking table tests of reinforced concrete columns using high-strength flexural reinforcement and under low axial force (around 0.01A_gf_c^', where A_g and f_c^' was the column gross section area and concrete cylinder strength, respectively) were investigated in this research. Two reinforced concrete frame specimens were tested. Each specimen consisted of a concrete base block, two columns with a clear-height-to-depth ratio greater than 12, and a top concrete block. The two specimens were first tested on the shaking table with 16 input ground motions, followed by static test on the strong floor. Specimen C1 used conventional strength longitudinal reinforcement (yield strength of 453 MPa) and specimen H1 used high-strength longitudinal reinforcement (yield strength of 716 MPa). The two specimens were designed to have the same flexural strength. Except for flexural reinforcement ratio and strength, all other design parameters were identical in the two specimens. Shaking table test results indicated the maximum drift of specimen H1 consistently larger than that of specimen C1 in all 16 table motions. The ratio of the maximum drift between the two specimens ranged from 1.3 to 2.4. Before yielding of the longitudinal reinforcement, lateral stiffness of the two specimens decreased as the maximum drift demand increased. Specimen H1 exhibited lower lateral stiffness and damping ratio. The inelastic responses indicated that the maximum strength of the two specimens were similar. Using Shimazaki and Sozen model provided an acceptable upper bound to estimate the maximum drift of specimen C1 but was not conservative for specimen H1. Static test results showed that both specimens sustained the maximum lateral force up to 10% drift ratio. Specimen C1 had severe concrete spalling at the column base. Specimen H1, in addition to severe concrete spalling at the column base, had two longitudinal reinforcement fracture during the 2^(nd) cycle of 10% drift cycle. In general, specimen C1 had larger normalized energy absorption ability than that of specimen H1.

主题分类 工程學 > 工程學總論
工程學 > 土木與建築工程
参考文献
  1. ACI Committee 318(2019).Building Code Requirements for Structural Concrete and Commentary (ACI 318-19).American Concrete Institute.
  2. Bonacci, J.F.(1989).Champaign,University of Illinois at Urbana-Champaign.
  3. Cheng, M.Y.,Giduquio, M. B.(2014).Cyclic Behavior of Reinforced Concrete Flexural Members Using High-Strength Flexural Reinforcement.ACI Structural Journal,111(4),893-902.
  4. Giduquio, M. B.,Cheng, M.Y.,Wibowo, S. B. L.(2015).High-Strength Flexural Reinforcement in Reinforced Concrete Flexural Members under Monotonic Loading.ACI Structural Journal,112(6),793-803.
  5. Laughery, L.A.,Pujol, S.(2019).Drift Demands on Reinforced Concrete Structures Subjected to Strong Ground Motions.ACI Structural Journal,116(1),103-115.
  6. Poudel, A.,Lequesne, R. D.,Lepage, A.(2018).Diagonally Reinforced Concrete Coupling Beams: Effects of Axial Restraint.ACI Structural Journal,118(6),293-220.
  7. Shimazake, K.,Sozen, M.(1984).Seismic Drift of Reinforced Concrete Structures.Technical Report,145-165.
  8. Tavallali1, H.,Lepage, A.,Rautenberg, J.,Pujol, S.(2011).Cyclic Response of Concrete Frame Members Reinforced with Ultrahigh Strength Steel.Structures Congress,560-570.