题名

基於全景控制影像進行室內定位及導航之分析

并列篇名

Indoor Positioning and Navigation Based on Control Spherical Panoramic Images

DOI

10.6574/JPRS.2017.22(2).3

作者

黃聰哲(Tsung-Che Huang);曾義星(Yi-Hsing Tseng)

关键词

球形全景影像 ; 室內定位及導航 ; 影像匹配 ; Spherical Panorama Image ; Indoor Positioning and Navigation ; Image Feature Matching

期刊名称

航測及遙測學刊

卷期/出版年月

22卷2期(2017 / 06 / 01)

页次

105 - 115

内容语文

繁體中文

中文摘要

本研究旨在透過球形全景影像進行室內定位及導航分析,利用影像特徵匹配獲取連續影像重疊區共軛像點的資訊結合控制點解算相機之位置。研究分二階段,第一階段為建立控制影像資料庫,控制影像意指其外方位資訊已知,此部分可透過光束法區域平差完成,第二階段則是未知方位的球形全景影像(查詢影像)透過自動化搜尋控制影像資料庫,獲取含有重疊區的控制影像資訊,藉由影像特徵萃取及匹配技術求得共軛點資訊進而求解未知影像方位資訊。本研究使用兩種不同類型之共軛點進行室內定位實驗,並根據實驗結果對位置及姿態進行分析及討論。

英文摘要

The objective of this study is to develop a novel method of indoor positioning and navigation with the use of spherical panoramic image (SPI).Two steps are planned in the technology roadmap. Firstly, establishing a control SPI database that contains a good number of well-distributed control SPIs pre-acquired in the target space. A control SPI means an SPI with known exterior orientation parameters (EOPs). Having a control SPI database, the target space will be ready to provide the service of positioning and navigation. Secondly, the position and orientation parameters (POPs) of a newly taken SPI can be solved by using overlapped SPIs searched from the control SPI database. For validation, two kinds of corresponding points were applied in the experiment. The result of calculation were shown in this research including the analysis and discussion.

主题分类 工程學 > 交通運輸工程
参考文献
  1. Bay, H.,Ess, A.,Tuytelaars, T.,Gool, V.L.(2008).SURF: speeded up robust features.Computer Vision and Image Understading,110(3),346-359.
  2. Fischler, M.A.,Bolles, R.C.(1981).Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartofraphy.Comm. of the ACM,24,381-395.
  3. Hartley, R.,Zisserman, A.(2004).Multiple View Geometry in Computer Vision.Cambridge University.
  4. Horn, B.K.P.(1990).Recovering baseline and orientation from essential matrix.Journal of the Optical Society of America,1-10.
  5. Joglekar, J.,Gedam, S.S.(2012).Area based image matching methods – a survey.International Journal of Emerging Technology and Advanced Engineering,2(1),130-136.
  6. Lee, Y.,Lee, S.,Kim, D.,Oh, J.K.(2013).Improved industrial part pose determination based on 3D closed-loop boundaries.IEEE International Symposium on Robotics (ISR)
  7. Lin, K.Y.(2014).Taiwan, ROC,National Cheng Kung University.
  8. Longuet-Higgins, H.C.(1981).A computer algorithm for reconstructing a scene from two projections.Nature,293,133-135.
  9. Scaramuzza, D.,Fraundorfer, F.(2012).Visual odometry: part I - The first 30 years and fundamentals.IEEE Robotics and Automation Magazine,18(4),85-87.
  10. Stewénius, H.,Engels, C.,Nistér, D.(2006).Recent developments on direct relative orientation.ISPRS Journal of Photogrammetry and Remote Sensing,60(4),284-294.
  11. Zhang, C.,Xu, J.,Xi, N.,Jia, Y.,Li, W.(2012).Development of an omni-direction 3D camera for robot navigation.IEEE/ASME International Conference on Advance Intelligent Mechartronics,Taiwan: