题名

應用無人機觀測大氣邊界層結構

并列篇名

Observations on Atmospheric Boundary Layer Structure Using An Unmanned Aerial System

DOI

10.6574/JPRS.201806_23(2).0003

作者

柯立晉(Li-Jin Ke);王聖翔(Sheng-Hsiang Wang);黃翔昱(Hsiang-Yu Huang);王悅晨(Yueh-Chen Wang);莊翔富(Hsiang-Fu Chuang);洪若雅(Rou-Ya Hung);游志淇(Zhi-Chi You);張順欽(Shuenn-Chin Chang)

关键词

無人機 ; 大氣邊界層 ; 探空氣球 ; 光達 ; UAS ; PBL ; Sounding balloon ; Lidar

期刊名称

航測及遙測學刊

卷期/出版年月

23卷2期(2018 / 06 / 01)

页次

103 - 113

内容语文

繁體中文

中文摘要

大氣邊界層(Planetary Boundary Layer)位在地球大氣最底層,除了反映地表、人類活動與植被的相互作用外,其發展和結構也會影響許多天氣現象與空氣品質。本研究旨在建構一套近地面無人機觀測系統,並利用此系統探討邊界層的垂直發展結構及對應的空氣污染物的變化。實驗觀測時間地點為2017年8月於板橋探空站及鄰近空域,共進行了16趟的飛行任務,其中8月29日為密集觀測日,整合7筆無人機、3筆探空氣球氣象剖面及連續光達氣膠垂直分布資料,試圖完整解析出典型夏日北臺灣的邊界層發展結構。本研究分析結果顯示,無人機配載微型探空系統,並應用於0-3公里內的氣象剖面觀測,結果與氣象局例行施放的探空氣球觀測結果具良好的一致性,尤其於邊界層頂的高度偵測上幾乎吻合,兩者主要的誤差來源為是否考慮溫溼度傳感器的輻射加熱效應,這部分可以做為後續修正改良的參考。除此之外,比較光達的消偏振比連續觀測資料,氣膠垂直分布不連續處也與探空觀測逆溫的位置相吻合,驗證了本觀測 系統之準確性。在未來,將持續推動此觀測系統能酬載更多傳感器,獲取更全面觀測資料,以應用於大氣邊界層內物理機制探討與氣象模式改善之方向。

英文摘要

Planetary boundary layer (PBL), the skin layer of atmosphere, has strong interactions with earth surface, human activities, and vegetation. The PBL structure and development has effects on many weather phenomena as well as air quality. In this study, we aim to observe the PBL structure and the evolution of air pollution vertically using an unmanned aerial system (UAS). The experiment was carried out in the New Taipei city nearby the Taipei sounding station in August of 2017. We had conducted 16 flights in total and 7 of them on 29th August. In addition, data from three sounding balloons and lidar observations enhance the data set for studying the PBL development for a typical summertime day on 29th. Our results show that the UAS provides the low-level (0-3 km) atmospheric profile with parameters (temperature, RH, and Pressure) in good agreement with the data observed by meteorological soundings, especially for the PBL height detection. The uncertainty analysis suggests that the radiation heating effect is the main issue causing the overestimation of temperature and RH. This potential error can be considered in the next generation sensor design. Furthermore, we compare the UAS observations with lidar depolarization ratio profiles. Normally, aerosols distributed within the PBL top height and lidar can easily detect the discontinue layer between aerosol and clean air (above PBL). The discontinue layer is associated to an inversion layer which can be observed by sounding data. Our lidar observation and UAS sounding has good agreement on the evolution of PBL top height during the daytime. All the observational results show the accuracy and reliable of the UAS for PBL application. In the future, this UAS will continue to promote the deployment of more sensors to obtain more comprehensive observation data. The understanding of PBL thermodynamic mechanism and numerical simulation can be improved with the new UAS technology applied.

主题分类 工程學 > 交通運輸工程
参考文献
  1. Andrews, A.E.,Kofler, J.D.,Trudeau, M.E.,Williams, J.C.,Neff, D.H.,Masarie, K.A.,Chao, D.Y.,Kitzis, D.R.,Novelli, P.C.,Zhao, C.L.,Dlugokencky, E.J.,Lang, P.M.,Crotwell, M.J.,Fischer, M.L.,Parker, M.J.,Lee, J.T.,Baumann, D.D.,Desai, A.R.,Stanier, C.O.,De Wekker, S. F.J.,Wolfe, D.E.,Munger, J.W.,Tans, P.P.(2014).CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory’s Global Greenhouse Gas Reference Network: Instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts.Atmospheric Measurement Techniques,7(2),647-687.
  2. Baars, H.,Kanitz, T.,Engelmann, R.,Althausen, D.,Heese, B.,Komppula, M.,Preissler, J.,Tesche, M.,Ansmann, A.,Wandinger, U.,Lim, J.H.,Ahn, J.Y.,Stachlewska, I.S.,Amiridis, V.,Marinou, E.,Seifert, P.,Hofer, J.,Skupin, A.,Schneider, F.,Bohlmann, S.,Foth, A.,Bley, S.,Pfuller, A.,Giannakaki, E.,Lihavainen, H.,Viisanen, Y.,Hooda, R.K.,Pereira, S.N.,Bortoli, D.,Wagner, F.,Mattis, I.,Janicka, L.,Markowicz, K.M.,Achtert, P.,Artaxo, P.,Pauliquevis, T.,Souza, R.A.F.,Sharma, V.P.,van Zyl, P.G.,Beukes, J.P.,Sun, J.Y.,Rohwer, E.G.,Deng, R.R.,Mamouri, R.E.,Zamorano, F.(2016).An overview of the first decade of PollyNET: An emerging network of automated Raman-polarization lidars for continuous aerosol profiling.Atmospheric Chemistry and Physics,16(8),5111-5137.
  3. Banta, R.M.,Pichugina, Y.L.,Kelley, N.D.,Hardesty, R.M.,Brewer, W.A.(2013).Wind energy meteorology: Insight into wind properties in The turbine-rotor layer of the atmosphere from high-resolution Doppler lidar.Bulletin of The American Meteorological Society,94(6),883-902.
  4. Barrett, E.W.,Ben-Dov, O.(1967).Application of the lidar to air pollution measurements.Journal of Applied Meteorology,6(3),500-515.
  5. de Boer, G.,Lawrence, D.,Palo, S.,Argrow, B.,LoDolce, G.,Curry, N.,Weibel, D.,Finnamore, W.,D'Amore, P.,Borenstein, S.,Nichols, T.,Elston, J.,Ivey, M.,Bendure, A.,Schmid, B.,Long, C.,Telg, H.,Gao, R.,Hock, T.,Bland, G.(2017).DOE Office of Science Atmospheric Radiation Measurement (ARM) ProgramDOE Office of Science Atmospheric Radiation Measurement (ARM) Program,United States:.
  6. Emeis, S.,Schäfer, K.,Münkel, C.(2009).Observation of the structure of the urban boundary layer with different ceilometers and validation by RASS data.Meteorologische Zeitschrif,18(2),149-154.
  7. Hammann, E.,Behrendt, A.,Le Mounier, F.,Wulfmeyer, V.(2015).Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD (CP)2 observational prototype experiment.Atmospheric Chemistry and Physics,15(5),2867-2881.
  8. Korhonen, K.,Giannakaki, E.,Mielonen, T.,Pfüller, A.,Laakso, L.,Vakkari, V.,Baars, H.,Engelmann, R.,Beukes, J.P.,Van Zyl, P.G.,Ramandh, A.,Ntsangwane, L.,Josipovic, M.,Tiitta, P.,Fourie, G.,Ngwana, I.,Chiloane, K.,Komppula, M.(2014).Atmospheric boundary layer top height in South Africa: Measurements with lidar and radiosonde compared to three atmospheric models.Atmospheric Chemistry and Physics,14(8),4263-4278.
  9. Sasakawa, M.,Shimoyama, K.,Machida, T.,Tsuda, N.,Suto, H.,Arshinov, M.,Davydov, D.,Fofonov, A.,Krasnov, O.,Saeki, T.,Koyama, Y.,Maksyutov, S.(2010).Continuous measurements of methane from a tower network over Siberia.Tellus Series B-Chemical and Physical Meteorology,62(5),403-416.
  10. Stull, R.(1988).An Introduction to Boundary Layer Meteorology.Dordrecht:Kluwer Academic Publishers.
  11. Wang, J.M.,Murphy, J.G.,Geddes, J.A.,Winsborough, C.L.,Basiliko, N.,Thomas, S.C.(2013).Methane fluxes measured by eddy covariance and static chamber techniques at a temperate forest in central Ontario, Canada.Biogeosciences,10(6),4371-4382.
  12. Welton, E.J.,Voss, K.J.,Gordon, H.R.,Maring, H.,Smirnov, A.,Holben, B.,Schmid, B.,Livingston, J.M.,Russell, P.B.,Durkee, P.A.(2000).Ground‐based lidar measurements of aerosols during ACE ‐ 2: Instrument description, results, and comparisons with other ground ‐ based and airborne measurements.Tellus Series B-Chemical and Physical Meteorology,52(2),636-651.
被引用次数
  1. 潘巧玲,劉豪聯,游志淇,柯立晉,邱思翰,李育棋,王聖翔(2023)。新一代低層大氣無人機探空系統。前瞻科技與管理,12(1),38-59。
  2. 鄭夙芬,曾清標,張培華(2018)。這是個「問題」嗎?問題導向學習之行動研究。大學教學實務與研究學刊,2(2),91-125。