题名

結合光學與紅外線熱影像正射鑲嵌處理

并列篇名

Orthomosaic Processing based on Infrared Thermal and Optical Imagery

DOI

10.6574/JPRS.201806_23(2).0001

作者

楊明德(Ming-Der Yang);莊子毅(Tzu-Yi Chuang);韓仁毓(Jen-Yu Han)

关键词

無人機 ; 紅外線熱影像 ; 超解析重建 ; 精準農業 ; Unmanned Aircraft Vehicle ; Infrared Thermal Image ; Super-resolution Reconstruction ; Precision agriculture

期刊名称

航測及遙測學刊

卷期/出版年月

23卷2期(2018 / 06 / 01)

页次

71 - 81

内容语文

繁體中文

中文摘要

相較於傳統衛照與航照之遙感探測技術,無人機載具在機動性與量測精度上皆展現其優勢。本研究以建置稻作生命週期葉溫資料庫為目標,提出無人機光學與紅外線熱影像之自動化資料處理程序,協助後續針對稻作正常生長狀態、水分缺乏、養份缺乏、病蟲害等大量特徵分析作業,朝向精準農業經營與管理之目的。然而,目前紅外線熱影像的影像解析度仍遠不如光學影像,往往造成在影像內容判釋或特徵萃取處理上之難度。因此,本文著重於運用影像超解析重建技術提升紅外線熱影像之空間解析度,並同時提出可產製紅外線熱影像鑲嵌圖之架構,藉以提升農耕地熱數據的全面評估與判釋成效。實際稻作影像處理成果顯示,超解析重建技術相較於一般內插處理,除了可提升影像解析度亦可維持影像內容資訊,並驗證所提出方法進行正射熱影像鑲嵌圖製作之有效性。

英文摘要

Compared with traditional remote sensing and aerial photogrammetry technology, Unmanned aircraft vehicles (UAVs) show their advantages in mobility and measurement accuracy. In this study, we plan to establish a leaf temperature database for rice life cycle, and proposed an automated data processing scheme for UAV optical and infrared thermal imagery to assist in the follow-up analysis of rice growth, water deficiency, lack of nutrients, and pests and also to aim at precision agriculture management and management. However, at present, the resolution of infrared thermal images is still far inferior to optical images, which often results in difficulty in interpretation of image content or feature extraction processing. Therefore, this study focuses on the use of image super-resolution reconstruction technology to improve the spatial resolution of infrared thermal imaging and at the same time puts forward a scheme for producing infrared thermal image mosaic maps, so as to improve the comprehensive assessment and interpretation of thermal data of agricultural land.

主题分类 工程學 > 交通運輸工程
参考文献
  1. Akgun, T.,Altunubasak, Y.,Mersereau, R.M.(2005).Super-resolution reconstruction of hyperspectral images.IEEE Transactions on Image Processing,14(11),1860-1875.
  2. Blackmer, T.M.,Schepers, J.S.,Varvel, G.E.,Walter-Shea, E.A.(1996).Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies.Agronomy Journal,88,1-5.
  3. Chan, J.C.W.,Ma, J.,Kempeneers, P.,Canters, F.(2010).Superresolution enhancement of hyperspectral CHRIS/Proba images with a thin-plate spline nonrigid transform model.IEEE Transactions on Geoscience and Remote Sensing,48(6),2569-2579.
  4. Dai, S.,Han, M.,Xu, W.,Wu, Y.,Gong, Y.(2007).Soft edge smoothness prior for alpha channel super resolution.2007 IEEE Conference on Computer Vision and Pattern Recognition,Minneapolis, MN, USA:
  5. Freeman, W.T.,Jones, T.R.,Pasztor, E.C.(2002).Example-based super resolution.IEEE Computer Graphics and Applications,22(2),56-65.
  6. Galbraith, A.E.,Theiler, J.,Thome, K.J.,Ziolkowski, R.(2005).Resolution enhancement of multilook imagery for The multispectral thermal imager.IEEE Transactions on Geoscience and Remote Sensing,43(9),1964-1977.
  7. Glasner, D.,Bagon, S.,Irani, M.(2009).Super-resolution from a single image.2009 IEEE 12th International Conference on Computer Vision,Rehovot, Israel:
  8. Heikkilä, J.,Silvén, O.(1997).A four-step camera calibration procedure with implicit image correction.Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,San Juan, Puerto Rico, USA:
  9. Hirschmüller, H.(2008).Stereo processing by semi-global matching and mutual information.Pattern Analysis and Machine Learning,30(2),328-341.
  10. Lowe, D.G.(1999).Object recognition from local scale-invariant features.Proceedings of The Seventh IEEE International Conference on Computer Vision
  11. Maset, E.,Fusiello, A.,Crosilla, F.,Toldo, R.,Zorzetto, D.(2017).Photogrammetric 3D building reconstruction from thermal images.ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,IV–2/W3,25-32.
  12. Merino, M.T.,Nunez, J.(2007).Super-resolution of remotely sensed images with variable-pixel linear reconstruction.IEEE Transactions on Geoscience and Remote Sensing,45(5),1446-1457.
  13. Park, S.C.,Park, M.K.,Kang, M.G.(2003).Super-resolution image reconstruction: A technical overview.IEEE Signal Processing Magazine,20(3),21-36.
  14. Stamatopoulos, C.,Chuang, T.Y.,Fraser, C.S.,Lu, Y.Y.(2012).Fully automated image orientation in the absence of targets.International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,39(B5),303-308.
  15. Stark, H.,Oskoui, P.(1989).High-resolution image recovery from image-plane arrays, using convex projections.Journal of the Optical Society of America Optics, Image Science, and Vision,6(11),1715-1726.
  16. Thomas, J.R.,Gausman, H.W.(1977).Leaf reflectance vs. leaf chlorophyll and carotenoid concentration for eight crops.Agronomy Journal,69(5),799-802.
  17. Thomas, J.R.,Namken, L.N.,Oerther, G.F.,Brown, R.G.(1971).Estimating leaf water content by reflectance measurements.Agronomy Journal,63(6),845-847.
  18. Tsai, R.Y.,Huang, T.S.(1984).Multiple frame image restoration and registration.Advances in Computer Vision and Image Processing,1(2),317-339.