题名

應用無人飛機航拍影像協助農業勘災-以香蕉災損影像判釋為例

并列篇名

Application of Unmanned Aerial Vehicle (UAV) Photography on Agricultural Post-disaster investigation - A Case Study on Image Interpretation of Banana Plantation Damages by Disasters

DOI

10.6574/JPRS.201806_23(2).0002

作者

周巧盈(Chiao-Ying Chou);巫思揚(Shi-Yang Wu);陳琦玲(Chi-Ling Chen)

关键词

地理資訊系統 ; 農業災損 ; 物件導向式影像分類 ; 像元式影像分類 ; 數值地 ; 表模型 ; Geographic Information System ; Agricultural Damage ; Object-oriented Image Classification ; Pixel-based Image Classification ; Digital Surface Model (DSM)

期刊名称

航測及遙測學刊

卷期/出版年月

23卷2期(2018 / 06 / 01)

页次

83 - 101

内容语文

繁體中文

中文摘要

無人飛行載具(UAV)拍攝技術的快速紀錄、高機動性與高空間解析度影像,能提供農損查報所需之空間輔助圖資,縮短人力勘災的時間並加速災後復耕。本研究應用UAV之高解析度影像,透過地理資訊系統之影像非監督分類、影像分割與數值地表模型(DSM),針對香蕉園風災後之傾倒情形,進行災損影像判釋技術之發展與不同判釋法之評估。結果顯示,UAV航拍之正射影像能清楚觀測香蕉園的災損範圍與相對災損情形,但DSM對園內的災損傾倒不具有效的判釋能力。影像非監督分類之像元式與物件導向式之災損判釋率比對現地核定之災損率,以災損率達20%為基準(透過30處地籍樣區),前者之災損判釋率為86.7%,後者為96.7%,兩者對於香蕉傾倒災損都具有十分高的判釋能力。雖然後者之災損判釋率高,但所需要的人力、技術與時間成本也都相對較高。因此,針對災後即時且大範圍香蕉園的勘災工作時,本研究推薦影像像元式之非監督分類技術,提供災後應變與勘災的空間輔助圖資,進行香蕉園災後大範圍的災損判釋與評估作業。

英文摘要

In order to improve the reconnaissance, rescue processes and rehabilitation, the characteristics of unmanned aerial vehicles (UAV), including quickly recording, mobility, and high-spatial-resolution images, can provide maps on assisting the agricultural post-disaster investigation. In this study, geographic information system, image unsupervised classification, image segmentation, and digital surface model (DSM) are applied with UAV high-spatial-resolution images. The objectives of this study are to develop image interpretation techniques on banana plantation damages by typhoon disasters and to evaluate the abilities of agricultural damage interpretations among different techniques. As results, the damage region and the situation of banana plantations can be delineated by UAV orthophotos. However, DSM cannot discriminate the degrees of wind-thrown in plantations. In addition, comparing the interpretation damage rates of pixel-based and of object-oriented image unsupervised classifications, with ground-based official approves (according to 30 samples of cadastral applications with the baseline of 20% of damage rate), the damage rate of pixel-based image interpretation is 86.7% and the damage rate of object-oriented image interpretation is 96.7%. Both image interpretations can discriminate the banana plantation damages effectively. Although the latter performs better than the former, it demands higher on techniques, labor forces, and time consuming. Therefore, we suggest adopting the pixel-based unsupervised image classification to provide the maps on assisting in post-disaster operation and investigation for wide-region banana plantations.

主题分类 工程學 > 交通運輸工程
参考文献
  1. 張崴, W.,蕭宇伸, Y.S.,張榮傑(2017)。UAV 航拍技術應用於河道變遷土砂監測和山區地形製圖之可行性分析。中華水土保持學報,48(1),1-13。
    連結:
  2. Anderberg, M.R.(1973).Cluster Analysis for Applications.New York, NY:Academic Press.
  3. Arbiol, R.,Zhang, Y.,Pala, V.(2006).Advanced classification techniques: a review.ISPRS Commission VII Mid-term Symposium, From Pixel to Processes,Enschede, Netherlands:
  4. Blaschke, T.(2010).Object based image analysis for remote sensing.ISPRS Journal of Photogrammetry and Remote Sensing,65(1),2-16.
  5. Comaniciu, D.,Meer, P.(2002).Mean shift: A robust approach toward feature space analysis.IEEE Transactions on Pattern Analysis and Machine Intelligence,24(5),603-619.
  6. Eisenbeiss, H.(2006).Applications of photogrammetric processing using an autonomous model helicopter, ISPRS Commission I Symposium, Paris, France, July.International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,36(1/B)
  7. ESRI (Environmental System Research Institute), 2016. Understanding Segmentation and Classification, ArcMap 10.3 Spatial Analyst Tool Support, Available at: http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/understanding-segmentation-and-classification.htm, Accessed February 20, 2017.
  8. Ezequiel, C.A.F.,Cua, M.,Libatique, N.C.,Tangonan, G.L.,Alampay, R.,Labuguen, R.T.,Favila, C.M.,Honrado, J.L.E.,Canos, V.,Devaney, C.,Loreto, A.B.,Bacusmo, J.,Palma, B.(2014).UAV aerial imaging applications for post-disaster assessment, environmental management and infrastructure development.2014 International Conference on Unmanned Aircraft Systems (ICUAS),Orlando, FL:
  9. Frias-Martinez, V.,Soto, H.H.,Frias-Martinez, E.(2012).Characterizing urban landscapes using geolocated tweets.2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Conference on Social Computing,Amsterdam:
  10. Furukawa, Y.,Ponce, J.(2010).Accurate, dense and robust multiview stereopsis.IEEE Transactions on Pattern Analysis and Machine Intelligence,32(8),1362-1376.
  11. Gago, J.,Douthe, C.,Coopman, R.E.,Gallego, P.P.,Carbo, M.R.,Flexas, J.,Escalona, J.,Medrano, H.(2015).UAVs challenge to assess water stress for sustainable agriculture.Agricultural Water Management,153(1),9-19.
  12. Garcia-Ruiz, F.,Sankaran, S.,Maja, J.M.,Lee, W.S.,Rasmussen, J.,Ehsani, R.(2013).Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees.Computers and Electronics in Agriculture,91,106-115.
  13. Gibbes, G.,Adhikari, S.,Rostant, L.,Southworth, J.,Qiu, Y.(2010).Application of object based classification and high resolution satellite imagery for savanna ecosystem analysis.Remote Sensing,2,2748-2772.
  14. Gonzalez, R.C.,Woods, R.E.(2008).Digital Image Processing.Upper Saddle River, New Jersey:Prentice Hall.
  15. Herwitz, S.R.,Johnson, L.F.,Dunagan, S.E.,Sullivan, D.V.,Zheng, J.,Lobitz, B.M.,Leung, J.G.,Gallmeyer, B.A.,Aoyagi, M.,Slye, R.E.,Brass, J.(2004).Imagine from an unmanned aerial vehicles: agricultural surveillance and decision support.Computers and Electronics in Agriculture,44(1),49-61.
  16. Honkavaara, E.,Saari, H.,Kaivosoja, J.,Pölönen, I.,Hakala, T.,Litkey, P.,Mäkynen, J.,Pesonen, J.(2013).Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture.Remote Sensing,5(10),5006-5039.
  17. Jensen, J.R.(2006).Introductory Digital Image Processing.Pearson Education River, United States.
  18. Jhan, J.P.,Rau, J.Y.,Lin, C.C.,Shao, Y.C.(2011).Automatic tie-point matching for semi-automatic photo-triangulation.The 30th Conference on Surveying and Geomatics,Taichung City, Taiwan:
  19. Johansen, K.,Sohlbach, M.,Sullian, B.,Stringer, S.,Peasley, D.,Phinn, S.(2014).Mapping banana plants from high spatial resolution orthophotos to facilitate plant health assessment.Remote Sensing,6(9),8261-8286.
  20. Lang, E.,Lorup, J. S.,Cremers, A.,Greve, K.(2000).Environmental Information for Planning, Politics and the Public.Marburg:Metropolis Verlag.
  21. Li, Y.,Onasch, C.M.,Guo, Y.(2008).GIS-based detection of grain boundaries.Journal of Structural Geology,30(4),431-443.
  22. Lillesand, T.M.,Kiefer, R.W.(2000).Remote Sensing and Image Interpretation.New York:John Wiley and Sons Press.
  23. Lowe, D.G.(1999).Object recognition from local scale invariant features.International Conference on Computer Vision,Corfu, Greece:
  24. Lowe, D.G.(2004).Distinctive image features from scale invariant key points.International Journal of Computer Vision,60(2),91-110.
  25. Lowe, D.G.(2006).Automatic panoramic image stitching using invariant features.International Journal of Computer Vision,74(1),59-73.
  26. Näsi, R.,Honkavaara, E.,Lyytikäinen-Saarenmaa, P.,Blomqvist, M.,Litkey, P.,Hakala, T.,Viljanen, N.,Kantola, T.,Tanhuanpää, T.,Holopainen, M.(2015).Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level.Remote Sensing,7(11),15467-15493.
  27. Ollero, A.,Martinez-de-Dios, J.R.,Merino, L.(2006).Unmanned aerial vehicles as tools for forest-fire fighting.Forest Ecology and Management,234S,S263.
  28. Ortiz, S.M.,Breidenbach, J.,Kändler, G.(2013).Early detection of bark beetle green attach using TerraSAR-X and RapidEye data.Remote Sensing,5,1912-1931.
  29. Panda, S.S.,Hoogenboom, G.,Paz, J.(2009).Distinguishing blueberry bushes from mixed vegetation land use using high resolution satellite imagery and geospatial techniques.Computers and Electronics in Agriculture,67,51-58.
  30. Puig, E.,Gonzalez, F.,Hamilton, G.,Grundy, P.(2015).Assessment of crop insect damage using unmanned aerial systems: a machine learning approach.21st International Congress on Modelling and Simulation (MODSIM2015),Gold Coast, Qld, Australia:
  31. Remondino, F.,Barazzetti, L.,Nex, F.,Scaioni, M.,Sarazzi, D.(2011).UAV photogrammetry for mapping and 3D modeling-current status and future perspectives.International Archives of The Photogrammetry in Remoto Sensing and Spatial Information Sciences,XXXVIII–1/C22,25-31.
  32. Strecha, C.,Fransens, R.,Gool, L.V.(2004).Wide-baseline stereo from multiple views: A probabilistic account.Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Washington, DC:
  33. Strecha, C.,Tuytelaars, T.,Gool, L.V.(2003).Dense matching of multiple wide-baseline views.Proceedings of 9th IEEE International Conference on Computer Vision,France:
  34. Suárez, J.C.,Ontiveros, C.,Smith, S.,Snape, S.(2005).Use of airborne LiDAR and aerial photography in the estimation of individual tree heights in forestry.Computers & Geosciences,31(2),253-262.
  35. Tola, E.,Strecha, C.,Fua, P.(2012).Efficient large-scale multi-view stereo for ultra high-resolution image sets.Machine Vision and Applications,23(5),903-920.
  36. Yang, M.D.,Huang, K.S.,Kuo, Y.H.,Tsai, H.P.,Lin, L.M.(2017).Spatial and spectral hybrid image classification for rice lodging assessment through UAV imagery.Remote Sensing,9(6),583-602.
  37. 行政院農委會動植物防疫檢疫局, Council of Agriculture, Executive Yuan(2008).植物保護圖鑑系列 18─香蕉保護.行政院農業委員會動植物防疫檢疫局=Bureau of Animal and Plant Health Inspection and Quarantine, Council of Agriculture, Executive Yuan.
  38. 沈盈琇, Y.S.,黃尹男, Y.N.,陳柏華, A.(2015)。無人飛行載具應用於地震災害風險評估與災後應變之現況與展望。中國土木水利工程學刊,27(3),247-254。
  39. 徐金煌, R.,張國禎, K.C.(2015)。以 Pix4Dmapper 進行 UAV影像之空間資料產製。中國土木水利工程學刊,27(3),241-246。
  40. 高雄市政府農業局,2016。年度統計報表—高雄市主要農產品生產概況,高雄市政府農業局。[Agriculture Bureau of Kaohsiung City Government, 2016. 2016 Annual statistical report-Summary of dominant agricultural productions in Kaohsiung City, Agriculture Bureau of Kaohsiung City Government press. (in Chinese)]
  41. 莊淑姿, S. Z.(2011)。香蕉產業與旗山經濟發展。高雄文獻,1(2),28-61。
  42. 莊淑姿, S. Z.(1997)。香蕉產業對鄉村大眾運輸業發展的影響—以旗山地區為例。農業推廣學報,13,83-116。
  43. 雷祖強, T.C.,李哲原, C.Y.,葉惠中, H.C.,萬絢, S.(2009)。以區塊化物件分類萃取ADS-40影像中水稻田坵塊資訊之研究。航測及遙測學刊,14(2),127-140。
  44. 趙治平, C.P.,楊宏仁, H.R.(2009)。颱風天然災害後香蕉病害的綜合管理。天然災害作物復育之病害管理研討會專刊
  45. 鄭雅文, Y.W.,史天元, T.Y.,蕭國鑫, K.H.(2008)。物件導向分類於高解析度影像自動判釋。航測及遙測學刊,13(4),273-284。
  46. 蕭宇伸, Y.S.,蘇柏軒, B.H.,莊大賢, D.X.,陳樹群, S.C.(2014)。2018 臺中花博舉辦地環境地形先期調查:利用無人飛行載具與空載光達技術。農林學報,63,55-64。
  47. 蕭震洋, C.Y.,安軒霈, H.P.,陳俊愷, C.K.,饒見有, J.Y.,陳樹群, S.C.(2015)。應用 UAV 量化台東金崙溪河川型態演變及致災特性。中國土木水利工程學刊,27(3),213-222。
  48. 簡榮興, J.S.,黃全謚, C.Y.,曹鼎志, T.C.(2017)。莫拉克颱風對高雄六龜紅水仙溪之土石流災害分析。中興工程,134,74-83。
被引用次数
  1. 陳建元,呂侑儒,呂文豪(2021)。UAV輔助農田灌溉進水口易淤積區域調查與潛在災害分析。中華水土保持學報,52(2),100-111。
  2. 范慶龍(2021)。監督式機器學習於土地覆蓋分類效益之研究。臺灣土地研究,24(1),67-94。
  3. 林燕秀,林玉菁(2023)。空拍正射影像輔助原民土地使用分區更正-以桃園市復興區哈嘎灣部落為例。測量工程,60,14-26。
  4. 歐鐙元,徐嘉徽,李瑞陽(2018)。應用UAV影像於山坡地作物判釋之探討。航測及遙測學刊,23(4),245-256。