题名

應用UAV影像於山坡地作物判釋之探討

并列篇名

Utilizing Unmanned Aerial Vehicle Images to Interpret Crop Types in the Hillside Area

DOI

10.6574/JPRS.201812_23(4).0002

作者

李瑞陽(Re-Yang Lee);歐鐙元(Dang-Yuan Ou);徐嘉徽(Chia-Hui Hsu)

关键词

無人飛行載具 ; 多尺度分割 ; 物件導向 ; Unmanned Aerial Vehicle (UAV) ; Multi-scale Segmentation ; Object-oriented

期刊名称

航測及遙測學刊

卷期/出版年月

23卷4期(2018 / 12 / 01)

页次

245 - 256

内容语文

繁體中文

中文摘要

本研究探討UAV (Unmanned Aerial Vehicle)於臺灣山區作物分類時,可帶來效益及面臨的問題。首先利用無人機(UAV)取得臺中太平區的正射鑲嵌影像,接著運用eCognition軟體中的多尺度分割功能對影像進行物件分割,然後判釋分割區塊內之作物。因研究區內的「龍眼荔枝」類別與樹林難以有效區分,無法自動化分類,因此本研究針對分割後之影像區塊進行人工判釋,正確率分別在「龍眼荔枝」為88.2%、「樹林」為96.5%、「苗圃」為96.8%、及「其他」為99.7%。最後本研究提出透過不同時期影像,以龍眼與荔枝不同的花期進行區分,以及利用影像分割區塊進行地真資料蒐集的效率等建議,供後續相關研究參考。

英文摘要

The purpose of this study is to explore the benefits and problems by using UAV images in the crop classification of slope areas in Taiwan. We first made use of UAV to obtain the mosaic orthoimage in the hillside of Taizhong Taiping District. The eCognition multi-scale segmentation was then utilized to create image blocks. The crop types in the research area were then interpreted in an object-oriented manner. Because the category of "Longan (Dimocarpus longan) and Litchi (Litchi chinensis)" in the research area was difficult to distinguish effectively with the forest, which led to the difficulty of automatic classification, this study adopted artificial interpretation. The classification accuracies indicated that "Longan (Dimocarpus longan) and Litchi (Litchi chinensis)" was 88.2%, forest was 96.5%, nursery was 6.8%, and others was 99.7%. Finally, this study suggests to differentiate Longan (Dimocarpus longan) and Litchi (Litchi chinensis) using different flowering stages and to improve the efficiency of field data collection using segmentation blocks for subsequent research.

主题分类 工程學 > 交通運輸工程
参考文献
  1. 周巧盈, C.Y.,巫思揚, S.Y.,陳琦玲, C. L.(2018)。應用無人飛機航拍影像協助農業勘災─以香蕉災損影像判釋為例。航測及遙測學刊,23(2),83-101。
    連結:
  2. Ambrosia, V.,Buechel, S.,Wegener, S.,Sullivan, D.,Enomoto, F.,Hinkley, E.,Zajkowski, T.(2011).Unmanned airborne systems supporting disaster observations: Near-real-time data needs.34th International Symposium on Remote Sensing of Environment,Sydney, Australia:
  3. Baker, R.E.(2012).Combining micro technologies and unmanned systems to support public safety and homeland security.Journal of Civil Engineering and Architecture,6,1399-1404.
  4. Bendig, J.,Yu, K.,Aasen, H.,Bolten, A.,Bennertz, S.,Broscheit, J.,Gnyp, M.L.,Bareth, G.(2015).Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley.International Journal of Applied Earth Observation and Geoinformation,39,79-87.
  5. Blaschke, T.(2010).Object based image analysis for remote sensing.ISPRS Journal of Photogrammetry and Remote Sensing,65(1),2-16.
  6. Breckenridge, R.P.,Dakins, M.E.(2011).Evaluation of bare ground on rangelands using unmanned aerial vehicles: A case study.GIScience and Remote Sensing,48(1),74-85.
  7. Diaz-Varela, R.A.,Zarco-Tejada, P.J.,Angileri, V.,Loudjani, P.(2014).Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle.Journal of Environmental Management,134,117-126.
  8. Drăgut, L.,Tiede, D.,Levick, S.R.(2010).ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data.International Journal of Geographical Information Science,24(6),859-871.
  9. Feng, Q.L.,Liu, J.T.,Gong, J.H.(2015).Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier- A case of Yuyao, China.Water,7(4),1437-1455.
  10. Gademer, A.,Petitpas, B.,Mobaied, S.,Beaudoin, L.,Riera, B.,Roux, M.,Rudant, J.P.(2010).Developing a lowcost vertical take off and landing unmanned aerial system for centimetric monitoring of biodiversity the fontainebleau forest case.2010 IEEE International Geoscience and Remote Sensing Symposium,Honolulu, HI, USA:
  11. Göktoğan, A.H.,Sukkarieh, S.,Bryson, M.,Randle, J.,Lupton, T.,Hung, C.(2010).A rotary- wing unmanned air vehicle for aquatic weed surveillance and management.Journal of Intelligent and Robotic Systems,57(1-4),467-484.
  12. Huang, Y.B.,Thomson, S.J.,Hoffmann, W.C.,Lan, Y.B.,Fritz, B.K.(2013).Development and prospect of unmanned aerial vehicle technologies for agricultural production management.International Journal of Agricultural and Biological Engineering,6(3),1-10.
  13. Laliberte, A.S.,Herrick, J.E.,Rango, A.,Winters, C.(2010).Acquisition, or thorectification, and object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring.Photogrammetric Engineering and Remote Sensing,76(6),661-672.
  14. Laliberte, A.S.,Rango, A.(2011).Image processing and classification procedures for analysis of sub-decimeter imagery acquired with an unmanned aircraft over arid rangelands.GIScience and Remote Sensing,48(1),4-23.
  15. Laliberte, A.S.,Winters, C.,Rango, A.(2011).UAS remote sensing missions for rangeland applications.Geocarto International,26(2),141-156.
  16. Lejot, J.,Delacourt, C.,Piégay, H.,Fournier, T.,Trémélo, M.L.,Allemand, P.(2007).Very high spatial resolution imagery for channel bathymetry and topography from an unmanned mapping controlled platform.Earth Surface Processes and Landforms,32(11),1705-1725.
  17. Lu, B.,He, Y.H.(2017).Species classification using unmanned aerial vehicle (UAV)- Acquired high spatial resolution imagery in a heterogeneous grassland.ISPRS Journal of Photogrammetry and Remote Sensing,128,73-85.
  18. Park, J.K.,Park, J.H.(2015).Crops classification using imagery of unmanned aerial vehicle (UAV).Journal of the Korean Society of Agricultural Engineers,57(6),91-97.
  19. Peña, J.M.,Torres-Sánchez, J.,Serrano-Pérez, A.,de Castro, A.I.,López-Granados, F.(2015).Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution.Sensors,15(3),5609-5626.
  20. Salamí, .E.,Pedre, S.,Borensztejn, P.,Barrado, C.,Stoliar, A.,Pastor, E.(2009).Decision support system for hot spot detection.Intelligent Environments,2009(2),277-284.
  21. Senthilnath, J.,Kandukuri, M.,Dokania, A.,Ramesh, K.N.(2017).Application of UAV imaging platform for vegetation analysis based on spectral-spatial methods.Computers and Electronics in Agriculture,140,8-24.
  22. Swain, K.C.,Thomson, S.J.,Jayasuriya, H.P.W.(2010).Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop.Transactions of the ASABE,53(1),21-27.
  23. Turner, D.,Lucieer, A.,Watson, C.(2012).An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds.Remote Sensing,4(5),1392-1410.
  24. 黃建彰, C.C.(2015)。Taiwan, ROC,國立中興大學土木工程學系=National Chung Hsing University。
被引用次数
  1. 蔡仁卓(2022)。UAV空拍數值模型於BIM景觀規劃應用之研究。萬能學報,44,1-10。