题名

利用Landsat 8 OLI影像反演氣溶膠光學厚度之成果論證臺中市交通流量對PM_(2.5)之影響

并列篇名

Using the Aerosol Optical Depth Data Retrieved from Landsat 8 OLI Imagery to Demonstrate the Influence of Traffic Flow on PM_(2.5) in Taichung

DOI

10.6574/JPRS.201903_24(1).0005

作者

吳兆鴻(Chao-Hung Wu);徐逸祥(Yi-Shiang Shiu);張晏菁(Yen-Ching Chang)

关键词

氣溶膠光學厚度 ; 小客車當量 ; 空間迴歸模式 ; aerosol optical depth ; passenger car equivalent ; spatial regression model

期刊名称

航測及遙測學刊

卷期/出版年月

24卷1期(2019 / 03 / 01)

页次

59 - 77

内容语文

繁體中文

中文摘要

細懸浮微粒PM_(2.5)為臺灣中南部地區最關切的環境議題之一,其成因目前仍眾說紛云,除臺中火力發電廠之外,汽機車排放的廢氣亦常被歸咎為主因。然PM_(2.5)和交通量的監測常因僅有點狀的監測數據而無法全面探討交通量是否對PM_(2.5)有直接影響。因此本研究利用Landsat 8 OLI影像及離散係數法反演氣溶膠光學厚度,結合臺中及鄰近縣市共25個空氣品質測站,推估原臺中市假日及非假日的PM_(2.5);而交通量方面以Google地圖一般路況車流量的平均壅塞程度與實際車道的車道寬、路口停滯秒數等推算成估計的小客車當量來表達影像當下交通的壅塞程度。最後再考量空間自相關和不同空間單元的前提下,以空間迴歸模型決策模式找出最適合的迴歸模型,來解釋當地PM_(2.5)受本身及鄰近區域因子影響的情形。

英文摘要

Fine particulate matter PM_(2.5) is one of the most concerned environmental issues in central and southern Taiwan. Except for Taichung Thermal Power Plant, the exhaust emissions from motor vehicle are often attributed to the main cause. The ground and point monitoring approaches of air quality and traffic flow are generally used while may not fully explore whether traffic flow has a significant impact on PM_(2.5). Therefore, this study used Landsat 8 OLI image and dispersion coefficient method to retrieve aerosol optical depth. We also included 25 air quality stations in Taichung and neighboring counties as the reference to estimate PM_(2.5) for holiday and normal day in Taichung City. The passenger car equivalent was estimated with average congestion level from Google Map general road traffic as well as actual road width and the seconds of stopped-time to estimate the congestion of the traffic. Finally, considering the spatial autocorrelation and different spatial units, the spatial regression model decision process is used to explore the most suitable regression model to explain the local PM_(2.5) affected by the local and neighboring factors.

主题分类 工程學 > 交通運輸工程
参考文献
  1. Alexeev, M.,Chih, Y.Y.(2017).CAEPR Working PaperCAEPR Working Paper,未出版
  2. Anselin, L.(2005).Exploring spatial data with GeoDaTM: A workbook.Urbana, Illinois, USA:Spatial Analysis Laboratory, Department of Geography, University of Illinois at Urbana-Champaign.
  3. Cao, X.,Onishi, A.,Chen, J.,Imura, H.(2010).Quantifying the cool island intensity of urban parks using ASTER and IKONOS data.Landscape and Urban Planning,96(4),224-231.
  4. Chun, B.,Guhathakurta, S.(2017).Daytime and nighttime urban heat islands statistical models for Atlanta.Environment and Planning B: Urban Analytics and City Science,44(2),308-327.
  5. Connors, J.P.,Galletti, C.S.,Chow, W.T.(2013).Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona.Landscape ecology,28(2),271-283.
  6. Dai, Z.,Guldmann, J.M.,Hu, Y.(2019).Thermal impacts of greenery, water, and impervious structures in Beijing’s Olympic area: A spatial regression approach.Ecological Indicators,97,77-88.
  7. Gao, B.C.(1996).NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space.Remote Sensing of Environment,58(3),257-266.
  8. Gao, F.,Masek, J.,Schwaller, M.,Hall, F.(2006).On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance.IEEE Transactions on Geoscience and Remote Sensing,44(8),2207-2218.
  9. Gruebner, O.,Lowe, S.R.,Sampson, L.,Galea, S.(2015).The geography of post-disaster mental health: Spatial patterning of psychological vulnerability and resilience factors in New York City after Hurricane Sandy.International Journal of Health Geographics,14,16.
  10. Gurung, R.B.,Breidt, F.J.,Dutin, A.,Ogle, S.M.(2009).Predicting Enhanced Vegetation Index (EVI) curves for ecosystem modeling applications.Remote Sensing of Environment,113(10),2186-2193.
  11. Hao, Y.,Liu, Y.M.(2016).The influential factors of urban PM2.5 concentrations in China: A spatial econometric analysis.Journal of Cleaner Production,112,1443-1453.
  12. Hu, X.,Waller, L.A.,Al-Hamdan, M.Z.,Crosson, W.L.,Estes, M.G.,Estes, S.M.,Quattrochi, D.A.,Sarnat, J.A.,Liu, Y.(2013).Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression.Environmental Research,121,1-10.
  13. John, A.E.,Nilima,Binu, V.S.,Unnikrishnan, B.(2019).Determinants of antenatal care utilization in India: A spatial evaluation of evidence for public health reforms.Public Health,166,57-64.
  14. Jun, J.(2010).Understanding the variability of speed distributions under mixed traffic conditions caused by holiday traffic.Transportation Research Part C-Emerging Technologies,18(4),599-610.
  15. Kim, J.H.,Gu, D.,Sohn, W.,Kil, S.H.,Kim, H.,Lee, D.K.(2016).Neighborhood landscape spatial patterns and land surface temperature: An empirical study on single-family residential areas in Austin, Texas.International Journal of Environmental Research and Public Health,13(9),880.
  16. Kloog, I.,Nordio, F.,Coull, B.A.,Schwartz, J.(2012).Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the MidAtlantic states.Environmental Science & Technology,46(21),11913-11921.
  17. Kong, F.H.,Yin, H.W.,James, P.,Hutyra, L.R.,He, H.S.(2014).Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China.Landscape and Urban Planning,128,35-47.
  18. Li, J.X.,Song, C.H.,Cao, L.,Zhu, F.G.,Meng, X.L.,Wu, J.G.(2011).Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China.Remote Sensing of Environment,115(12),3249-3263.
  19. Limei, M.,Xiao, Z.(2014).A spatial econometric approach to studying regional air pollution in China.China Economist,9(4),42-56.
  20. Lin, T.H.,Chen, A.J.,Liu, G.R.,Kuo, T.H.(2002).Monitoring the atmospheric aerosol optical depth with SPOT data in complex terrain.International Journal of Remote Sensing,23(4),647-659.
  21. Ma, Z.W.,Hu, X.F.,Huang, L.,Bi, J.,Liu, Y.(2014).Estimating ground-level PM2.5 in China using satellite remote sensing.Environmental Science & Technology,48(13),7436-7444.
  22. Maimaitiyiming, M.,Ghulam, A.,Tiyip, T.,Pla, F.,Latorre-Carmona, P.,Halik, Ü.,Sawut, M.,Caetano, M.(2014).Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation.ISPRS Journal of Photogrammetry and Remote Sensing,89,59-66.
  23. Pérez, N.,Pey, J.,Cusack, M.,Reche, C.,Querol, X.,Alastuey, A.,Viana, M.(2010).Variability of particle number, black carbon, and PM10, PM2.5, and PM1 levels and speciation: Influence of road traffic emissions on urban air quality.Aerosol Science and Technology,44(7),487-499.
  24. Pope, R.,Wu, J.G.(2014).Characterizing air pollution patterns on multiple time scales in urban areas: A landscape ecological approach.Urban Ecosystems,17(3),855-874.
  25. Retalis, A.,Sifakis, N.(2010).Urban aerosol mapping over Athens using the differential textural analysis (DTA) algorithm on MERISENVISAT data.ISPRS Journal of Photogrammetry and Remote Sensing,65(1),17-25.
  26. Song, C.,Woodcock, C.E.,Seto, K.C.,Lenney, M.P.,Macomber, S.A.(2001).Classification and change detection using Landsat TM data: When and how to correct atmospheric effects?.Remote sensing of Environment,75(2),230-244.
  27. Song, S.J.,Wu, Y.,Jiang, J.K.,Yang, L.,Cheng, Y.,Hao, J.M.(2012).Chemical characteristics of sizeresolved PM2.5 at a roadside environment in Beijing, China.Environmental Pollution,161,215-221.
  28. Tabb, L.P.,McClure, L.A.,Quick, H.,Purtle, J.,Roux, A.V.D.(2018).Assessing the spatial heterogeneity in overall health across the United States using spatial regression methods: The contribution of health factors and county-level demographics.Health & place,51,68-77.
  29. Tan, P.H.,Chou, C.,Chou, C.C.K.(2013).Impact of urbanization on the air pollution “holiday effect” in Taiwan.Atmospheric Environment,70,361-375.
  30. Tan, P.H.,Chou, C.,Liang, J.Y.,Chou, C.C.K.,Shiu, C.J.(2009).Air pollution “holiday effect” resulting from the Chinese New Year.Atmospheric Environment,43(13),2114-2124.
  31. Tian, X.,Liu, Q.,Song, Z.,Dou, B.,Li, X.(2018).Aerosol optical depth retrieval from Landsat 8 OLI images over urban areas supported by MODIS BRDF/Albedo Data.IEEE Geoscience and Remote Sensing Letters,15(7),976-980.
  32. Tian, X.P.,Liu, S.H.,Sun, L.,Liu, Q.(2018).Retrieval of aerosol optical depth in the arid or semiarid region of northern Xinjiang, China.Remote Sensing,10(2),197.
  33. Wang, H.L.,Tao, L.,Qiu, F.,Lu, W.(2016).The role of socio-economic status and spatial effects on fresh food access: Two case studies in Canada.Applied Geography,67,27-38.
  34. Wang, J.,Christopher, S.A.(2003).Intercomparison between satellite ‐ derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies.Geophysical research letters,30(21),2095.
  35. Wang, M.,Wong, M.C.S.,Granato, J.(2015).International comovement of economic fluctuations: A spatial analysis.World Development,67,186-201.
  36. Yin, C.H.,Yuan, M.,Lu, Y.P.,Huang, Y. P.,Liu, Y.F.(2018).Effects of urban form on the urban heat island effect based on spatial regression model.Science of the Total Environment,634,696-704.
  37. You, W.,Zang, Z.L.,Zhang, L.F.,Li, Y.,Pan, X.B.,Wang, W.Q.(2016).National-scale estimates of ground-level PM2.5 concentration in China using geographically weighted regression based on 3 km resolution MODIS AOD.Remote Sensing,8(3),184.
  38. Zhang, Z.H.,Khlystov, A.,Norford, L.K.,Tan, Z.K.,Balasubramanian, R.(2017).Characterization of traffic-related ambient fine particulate matter (PM2.5) in an Asian city: Environmental and health implications.Atmospheric Environment,161,132-143.
  39. Zhou, C.,Chen, J.,Wang, S.(2018).Examining the effects of socioeconomic development on fine particulate matter (PM 2.5) in China's cities using spatial regression and the geographical detector technique.Science of the Total Environment,619-620,436-445.
  40. Zhu, X.,Chen, J.,Gao, F.,Chen, X.,Masek, J.G.(2010).An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions.Remote Sensing of Environment,114(11),2610-2623.
  41. Zou, B.,Pu, Q.,Bilal, M.,Weng, Q.H.,Zhai, L.,Nichol, J.E.(2016).High-resolution satellite mapping of fine particulates based on geographically weighted regression.IEEE Geoscience and Remote Sensing Letters,13(4),495-499.
  42. 王釗, W.,彭艷, Y.,張樹譽, S.Y.(2008)。MODIS 資料反演AOD 及其在區域大氣污染監測中的應用。高原氣象,27(4),911-917。
  43. 吳振發, C.F.(2008)。土地利用管制策略對景觀格局衝擊評估。造園景觀學報,14(2),1-34。
  44. 呂明倫, M.L.,鍾玉龍, Y.L.(2007)。以 SPOT 衛星植生指標推估南仁山次生林之林分結構特徵。臺灣林業科學,22(2),183-192。
  45. 李瑞陽, R.Y.,林士強, S.C.(2006)。利用空間技術與景觀生態指數分析墾丁國家公園土地覆蓋變遷影響之研究。地理學報,46,31-48。
  46. 林唐煌, T.H.,劉振榮, G.R.,陳哲俊, A.J.(2001)。利用衛星資料求取大氣氣溶膠光學厚度之研究及其在大氣環境檢測之應用。航測及遙測學刊,6(4),1-26。
  47. 林源海, Y.H.(2013)。Taiwan, ROC,國立中興大學環境工程學系所=National Chung Hsing University。
  48. 林豐博, F.B.,曾平毅, P.Y.,林國顯, K.C.,蘇振維, C.W.,張瓊文, C.W.,鄭嘉盈, C.Y.,呂怡青, Y.C.,劉國慶, K.C.,陳昭堯, J.Y.,王怡方, Y.F.(2011).2011 年臺灣公路容量手冊.臺北=Taipei:交通部運研所=Institute of Transportation, MOTC.
  49. 徐則雙, Z.H.,王明常, M.C.,牛雪峰, X.F.,王鳳艷, F.Y.,李啟源, Q.Y.(2018)。基於數據同化的長春市霧霾反演與空間特徵分析。測繪與空間地理信息,41(4),33-36。
  50. 桃園市政府交通局, Taoyuan(2010)。,未出版
  51. 張敏, M.,宮兆寧, Z.,趙文吉, W.,阿多, Duo(2016)。近 30 年來白洋淀濕地影觀格局變化及其驅動機制。生態學報,36(15),4780-4791。
  52. 許俊傑, C.K.(2016)。Taiwan, ROC,國立中央大學=National Central University。
  53. 陽文銳, W.R.(2015)。北京城市景觀格局時空變化及驅動力。生態學報,35(13),4357-4366。
  54. 葉洸雄, K.H.,林政侑, C.Y.,林昭遠, C.Y.(2016)。大肚台地保安林及碳存量變遷之研究。水土保持學報,48(1),1651-1664。
  55. 詹崴崴, W.W.(2014)。Taiwan, ROC,國立臺北科技大學=National Taipei University of Technology。
  56. 臺中市政府交通局, Taichung City Government(2016)。臺中市政府交通局,2016。臺中市烏日區溪南路一段單號側及二段347等巷汰換管線工程 (交通維持計畫書)。[Bureau of Transportation, Taichung City Government, 2016. Pipeline replacement project of single-number side of Sec. 1, Xinan Rd. and Ln. 347 et al., Sec. 2, Xinan Rd., Wuri Dist., Taichung City (Traffic Maintenance Plan). (in Chinese)]。
  57. 劉焱序, Y.X.,彭建, J.,王仰麟, Y.L.(2017)。城市熱島效應與景觀格局的關聯:從城市規模、景觀組分到空間構型。生態學報,37(23),7769-7780。