题名

合成孔徑雷達影像於颱風豪雨後淹水之偵測

并列篇名

A Study for Inundation Mapping After Typhoon and Heavy Rainfall by Using SAR Imagery

DOI

10.6574/JPRS.201912_24(4).0001

作者

邱俊穎(Chun-Ying Chiu);謝嘉聲(Chia-Shen Hsieh);黃宗仁(Tsung-Jen Huang);葉堃生(Kuen-Sheng Yeh);管立豪(Li-Hao Kuan);胡植慶(Jyr-Ching Hu)

关键词

遙測 ; 合成孔徑雷達 ; 淹水 ; Remote Sensing ; SAR ; Inundation

期刊名称

航測及遙測學刊

卷期/出版年月

24卷4期(2019 / 12 / 01)

页次

211 - 222

内容语文

繁體中文

中文摘要

合成孔徑雷達影像(SAR)可以穿透雲霧、日夜皆可運作,可克服光學遙測影像在不良天候觀測的不足,對於颱風豪雨後的災情偵測有相當的優勢。本研究先以SAR影像對曾文水庫的水體進行辨識,進一步配合理論雷達陰影區與相對高程模型HAND(Height Above the Nearest Drainage)之資訊,可大幅降低誤判。結果顯示水體的辨識精確性(F1-Measure)從66.6%提升至92.0%。淹水區域則可透過兩張SAR影像中相對應像素間的差異作為判定,這個差異在6.2 dB有最佳的辨釋精確性約82.6%。本研究提出一個SAR影像淹水偵測流程,並以實際水災事件作為案例,進行淹水範圍影響之估測,分析的結果對於應變災情資訊提供有相當助益。

英文摘要

Comparing to optical remote sensor, Synthetic Aperture Radar (SAR) is an active sensor and radar signal can penetrate clouds for working in near all-weather/day-night. Therefore, SAR damage assessment methods enable useful disaster response in typhoon and heavy rainfall. This study first uses SAR images to detect change of surface water area in Zengwen Reservoir and limits surface water areas by HAND (Height Above the Nearest Drainage) mask and radar layover & shadow mask. The result's F1-Measure increase from 66.6% to 92.0% after using mask data. Backscatter decreases due to totally flooding, therefore threshold values can be used for separating flooded area. The best detected result: F1-Measure 82.6% occurs when the threshold is 6.2 dB. This study proposes a flood detection process by SAR image, and uses actual flood events as a case to estimate the impact of flooding range. The results of the analysis are quite helpful for providing the assessment and quick response after a hazardous event.

主题分类 工程學 > 交通運輸工程
参考文献
  1. 內政部資料開放平台,2019。2019 年全臺灣及部分離島20公尺網格DTM資料,https://data.moi.gov.tw/MoiOD/Data/DataDetail.aspx?oid=311BDE94-7054-437C-962F-62EA805969B3,引用 2019/11/19。[MOI Open Data, R.O.C Taiwan, 2019. 20 m DTM data in and around Taiwan Island available in 2019, Available at: https://data.moi.gov.tw/MoiOD/Data/DataDetail.aspx?oid=311BDE94-7054-437C-962F-62EA805969B3, Accessed November 19, 2019. (in Chinese)]
  2. Arciniegas, G.A.,Bijker, W.,Kerle, N.,Tolpekin, V.A.(2007).Coherence-and amplitude-based analysis of seismogenic damage in Bam, Iran, using ENVISAT ASAR data.IEEE Transaction on Geoscience and Remote Sensing,45(6),1571-1581.
  3. Bignami, C.,Chini, M.,Pierdicca, N.,Stramondo, S.(2004).Comparing and combining the capability of detecting earthquake damages in urban areas using SAR and optical data.2004 IEEE International Geoscience and Remote Sensing Symposium,AK, USA:
  4. Bioresita, F.,Puissant, A.,Stumpf, A.,Malet, J.P.(2018).A method for automatic and rapid mapping of water surfaces from Sentinel-1 imagery.Remote Sensing,10(2)
  5. Bovolo, F.,Bruzzone, L.(2005).A detail-preserving scale-driven approach to change detection in multitemporal SAR images.IEEE Transactions on Geoscience and Remote Sensing,43(12),2963-2972.
  6. Chini, M.,Bignami, C.,Stramondo, S.,Pierdicca, N.(2008).Uplift and subsidence due to the 26 December 2004 Indonesian earthquake detected by SAR data.International Journal of Remote Sensing,29(13),3891-3910.
  7. Christophe, E.,Chia, A.S.,Yin, T.,Kwoh, L.K.(2010).2009 earthquakes in Sumatra: The use of L-band interferometry in a SAR-hostile environment.IEEE International Geoscience and Remote Sensing Symposium,Honolulu, USA:
  8. Dong, L.G.,Shan, J.(2013).A comprehensive review of earthquake-induced building damage detection with remote sensing techniques.ISPRS Journal of Photogrammetry and Remote Sensing,84,85-99.
  9. ESA, 2014. Copernicus Open Access Hub, Available at: https://scihub.copernicus.eu/dhus/#/home, Accessed November 19, 2019.
  10. Foumelis, M.(2015).ESA Sentinel-1 toolbox generation of SAR backscattering mosaics, course materials.6th ESA Advanced Training Course on Land Remote Sensing,Bucharest, Romania:
  11. Giustarini, L.,Hostache, R.,Kavetski, D.,Chini, M.,Corato, G.,Schlaffer, S.,Matgen, P.(2016).Probabilistic flood mapping using synthetic aperture radar data.IEEE Transactions on Geoscience and Remote Sensing,54(12),6958-6969.
  12. Henry, J.B.,Chastanet, P.,Fellah, K.,Desnos, Y. L.(2006).Envisat multi‐polarized ASAR data for flood mapping.International Journal of Remote Sensing,27(9-10),1921-1929.
  13. Lillesand T.M.,Kiefer R.W.,Chipman J.W.(2004).Remote Sensing and Image Interpretation.New York, USA:John Wiley & Sons Inc.
  14. Lu, D.,Mausel, P.,Brondizio, E.,Moran, E.(2004).Change detection techniques.International Journal of Remote Sensing,25(12),2365-2407.
  15. Martinis, S.(2010).Germany,Ludwing Maximilians University of Munich.
  16. Martinis, S.,Rieke, C.(2015).Backscatter analysis using multi-temporal and multi-frequency SAR data in the context of flood mapping at River Saale, Germany.Remote Sensing,7(6),7732-7752.
  17. McHugh, M.L.(2012).Interrater reliability: The kappa statistic.Biochemia Medica,22(3),276-282.
  18. Nobre, A.D.,Cuartas, L.A.,Hodnett, M.,Rennó, C.D.,Rodrigues, G.,Silveira, A.,Waterloo, M.,Saleska, S.(2011).Height above the nearest drainage–a hydrologically relevant new terrain model.Journal of Hydrology,404(1-2),13-29.
  19. Plank, S.(2014).Rapid damage assessment by means of multi-temporal SAR- A comprehensive review and outlook to Sentinel-1.Remote Sensing,6(6),4870-4906.
  20. Sanyal, J.,Lu, X.X.(2004).Application of remote sensing in flood management with special reference to monsoon Asia: A review.Natural Hazards,33(2),283-301.
  21. Sasaki, Y.(2007).Sasaki, Y., 2007. The truth of the F-measure, Teach Tutor mater, 1-5..
  22. Singh, A.(1989).Digital change detection techniques using remotely-sensed data.International Journal of Remote Sensing,10(6),989-1003.
  23. Stewart, C.(2016).Exercise Sentinel-1 processing, course materials.8th ESA Training Course on Radar and Optical Remote Sensing,Cesis, Latvia:
  24. Thenkabail, P.S.(Ed.)(2015).Remote Sensing of Water Resources, Disasters and Urban Studies.USA:CRC Press..
  25. Twele, A.,Cao, W.X.,Plank, S.,Martinis, S.(2016).Sentinel-1-based flood mapping: A fully automated processing chain.International Journal of Remote Sensing,37(13),2990-3004.
  26. Ulaby, F.T.,Moore, R.K.,Fung, A.K.(1982).Microwave Remote Sensing: Active and Passive, Volume 2-Radar Remote Sensing and Surface Scattering and Emission Theory.USA:Addison-Wesley.
  27. Uprety, P.,Yamazaki, F.(2012).Use of high-resolution SAR intensity images for damage detection from the 2010 Haiti earthquake.IEEE International Geoscience and Remote Sensing Symposium,Munich, Germany:
  28. Yesou, H.(2017).Yesou, H., 2017. Floods and lakes monitoring SAR part, course material, ESA-MOST Dragon 4 Cooperation: Advanced Land Remote Sensing International Training Course, Yunnan, China.
  29. 胡植慶, J.C.,謝嘉聲, C.S.,邱俊穎, C.Y.,李秀芳, H.F.(2018)。行政院農業委員會林務局農林航空測量所委託研究計畫成果報告書行政院農業委員會林務局農林航空測量所委託研究計畫成果報告書,行政院農業委員會林務局農林航空測量所。
  30. 曾裕強, Y.C.,周念湘, N.S.,韋耀君, Y.J.,陳錕山, K.S.(2003)。衛星雷達水災監測系統。聯合學報,22,133-144。
被引用次数
  1. 楊尊華,陳立凡(2023)。應用Google Earth Engine與FwDET-GEE產生淹水地圖-以台南市、嘉義縣及屏東縣為例。中國土木水利工程學刊,35(6),595-603。