题名

臭氧空間暴露推估模型之比較-以六輕工業區為例

并列篇名

Comparison of Geospatial-Temporal Modeling Approaches in Ozone Pollution Estimations

DOI

10.6574/JPRS.201912_24(4).0003

作者

曾于庭(Yu-Ting Zeng);吳治達(Chih-Da Wu);陳裕政(Yu-Cheng Chen);許金玉(Chin-Yu Hsu);陳穆貞(Mu-Jean Chen)

关键词

臭氧 ; 土地利用迴歸 ; 地理加權迴歸 ; 時間地理加權迴歸 ; Ozone ; Geographically and Temporally Weighted Regression (GTWR) ; Geographically Weighted Regression (GWR) ; Land-use Regression (LUR)

期刊名称

航測及遙測學刊

卷期/出版年月

24卷4期(2019 / 12 / 01)

页次

235 - 244

内容语文

繁體中文

中文摘要

隨著地理資訊系統以及遙感探測技術上的純熟,空氣汙染空間暴露推估模型的發展更具多樣性。在過去研究中,已有許多應用單一模型進行空氣汙染物時空分布推估的案例,但系統性的比較不同推估模型解釋能力之研究仍不多見。基於此,本研究以環保署於雲林及嘉義所設置之十個特殊性工業區測站,於2015至2018年之空汙觀測資料為材料,選擇多元逐步迴歸為基礎之土地利用迴歸、地理加權迴歸及地理時間加權迴歸等三種統計建模方法,綜合比較不同方法學於O_3汙染物分布推估能力之差異。研究結果顯示,O_3模型R^2值介於0.51-0.64,並且以時間地理加權迴歸之模型結果最佳。

英文摘要

Recent advancements in the geographic information systems and remote sensing technology have supported the development of geospatial-temporal modeling approaches for air pollution. Previous studies estimated the spatial-temporal variability of air pollutants using a single model, but only a few studies considered exposure assessment using multiple models and compared model performance. In this study, O_3 data during 2015 to 2018 was collected from specific industrial monitoring stations provided by the Taiwan Environmental Protection Agency. Three geospatial-temporal modeling approaches including land-use regression (LUR), geographically weighted regression (GWR), and geographically and temporally weighted regression (GTWR) were used to predict O_3 for our comparison. The results showed that R^2 obtained from all models were 0.51 to 0.64. Furthermore, the GTWR model has the greatest performances compared to LUR, and GWR models.

主题分类 工程學 > 交通運輸工程
参考文献
  1. Bai, Y.,Wu, L.X.,Qin, K.,Zhang, Y.F.,Shen, Y.Y.,Zhou, Y.(2016).A geographically and temporally weighted regression model for ground-level PM2.5 estimation from satellite-derived 500m resolution AOD.Remote Sensing,8(3),262.
  2. Behera, S.N.,Sharma, M.,Mishra, P.K.,Nayak, P.,Damez-Fontaine, B.,Tahon, R.(2015).Passive measurement of NO2 and application of GIS to generate spatially-distributed air monitoring network in urban environment.Urban Climate,14,396-413.
  3. Brimblecombe, P.(2018).Effects of climate change on the biodeterioration of historic materials.Biodeterioration and Preservation in Art, Archaeology and Architecture,London, United Kingdom:
  4. Brook, R.D.,Rajagopalan, S.,Pope, C.A.,Brook, J.R.,Bhatnagar, A.,Diez-Roux, A.V.,Holguin, F.,Hong, Y.L.,Luepker, R.V.,Mittleman, M.A.,Peters, A.,Siscovick, D.,Smith, S.C.,Whitsel, L.,Kaufman, J.D.(2010).Particulate matter air pollution and cardiovascular disease: An update to The scientific statement from the American Heart Association.Circulation,121(21),2331-2378.
  5. Cheng, W.H.,Hsu, S.K.,Chou, M.S.(2008).Volatile organic compound emissions from wastewater treatment plants in Taiwan: Legal regulations and costs of control.Journal of Environmental Management,88(4),1485-1494.
  6. Feng, X.(2017).Research on spatial correlation between air quality and land use based on GWR models.Nature Environment and Pollution Technology,16(1),155-161.
  7. Hjort, J.,Hugg, T.T.,Antikainen, H.,Rusanen, J.,Sofiev, M.,Kukkonen, J.,Jaakkola, M.S.,Jaakkola, J.J.K.(2016).Fine-scale exposure to allergenic pollen in the urban environment: Evaluation of land use regression approach.Environmental Health Perspectives,124(5),619-626.
  8. Hu, X.,Waller, L.A.,Al-Hamdan, M.Z.,Crosson, W.L.,Estes, M.G., Jr.,Estes, S.M.,Quattrochi, D.A.,Sarnat, J.A.,Liu, Y.(2013).Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression.Environmental Research,121,1-10.
  9. Huang, B.,Wu, B.,Barry, M.(2010).Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices.International Journal of Geographical Information Science,24(3),383-401.
  10. Kallawicha, K.,Lung, S.C.C.,Chuang, Y.C.,Wu, C.D.,Chen, T.H.,Tsai, Y.J.,Chao, H.J.(2015).Spatiotemporal distributions and land-use regression models of ambient bacteria and endotoxins in the greater Taipei area.Aerosol and Air Quality Research,15(4),1448-1459.
  11. Kallawicha, K.,Tsai, Y.J.,Chuang, Y.C.,Lung, S.C.C.,Wu, C.D.,Chen, T.H.,Chen, P.C.,Chompuchan, C.,Chao, H.J.(2015).The spatiotemporal distributions and determinants of ambient fungal spores in the greater Taipei area.Environmental Pollution,204,173-180.
  12. Kerckhoffs, J.,Wang, M.,Meliefste, K.,Malmqvist, E.,Fischer, P.,Janssen, N.A.H.,Beelen, R.,Hoek, G.(2015).A national fine spatial scale land-use regression model for ozone.Environmental Research,140,440-448.
  13. Lin, C.H.,Wen, T.H.(2011).Using geographically weighted regression (GWR) to explore spatial varying relationships of immature mosquitoes and human densities with the incidence of Dengue.International Journal of Environmental Research and Public Health,8(7),2798-2815.
  14. Liu, H.,Liu, S.,Xue, B.R.,Lv, Z.F.,Meng, Z.H.,Yang, X.F.,Xue, T.,Yu, Q.,He, K.(2018).Ground-level ozone pollution and its health impacts in China.Atmospheric Environment,173,223-230.
  15. Mishra, S.(2017).Is smog innocuous? Air pollution and cardiovascular disease.Indian Heart Journal,69(4),425-429.
  16. Pan, W.C.,Wu, C.D.,Chen, M.J.,Huang, Y.T.,Chen, C.J.,Su, H.J.,Yang, H.I.(2016).Fine particle pollution, alanine transaminase, and liver cancer: A Taiwanese prospective cohort study (REVEAL-HBV).Journal of the National Cancer Institute,108(3),djv341.
  17. Qin, K.,Rao, L.L.,Xu, J.,Bai, Y.,Zou, J.H.,Hao, N.,Li, S.S.,Yu, C.(2017).Estimating ground level NO2 concentrations over central-eastern China using a satellite-based geographically and temporally weighted regression model.Remote Sensing,9(9),950.
  18. Ramanathan, V.,Feng, Y.(2009).Air pollution, greenhouse gases and climate change: Global and regional perspectives.Atmospheric Environment,43(1),37-50.
  19. Sillman, S.(1999).The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments.Atmospheric Environment,33(12),1821-1845.
  20. Torok, B.(ed.),Dransfield, T.J.(ed.)(2018).Green Chemistry.Amsterdam:Elsevier.
  21. Van den Hove, A.,Verwaeren, J.,Van den Bossche, J.,Theunis, J.,De Baets, B.(2019).Development of a land use regression model for black carbon using mobile monitoring data and its application to pollution-avoiding routing.Environmental Research,108619.
  22. Wang, M.,Gehring, U.,Hoek, G.,Keuken, M.,Jonkers, S.,Beelen, R.,Eeftens, M.,Postma, D.S.,Brunekreef, B.(2015).Air pollution and lung function in dutch children: A comparison of exposure estimates and associations based on land use regression and dispersion exposure modeling approaches.Environmental Health Perspectives,123(8),847-851.
  23. Weichenthal, S.,Van Ryswyk, K.,Goldstein, A.,Shekarrizfard, M.,Hatzopoulou, M.(2016).Characterizing the spatial distribution of ambient ultrafine particles in Toronto, Canada: A land use regression model.Environmental Pollution,208,241-248.
  24. Wolf, K.,Cyrys, J.,Harciníková, T.,Gu, J.W.,Kusch, T.,Hampel, R.,Schneider, A.,Peters, A(2017).Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany.Science of the Total Environment,579,1531-1540.
  25. Wu, C.D.,Chen, Y.C.,Pan, W.C.,Zeng, Y.T.,Chen, M.J.,Guo, Y.L.,Lung, S.C.C.(2017).Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability.Environmental Pollution,224,148-157.
  26. Wu, C.D.,Zeng, Y.T.,Lung, S.C.C.(2018).A hybrid kriging/land-use regression model to assess PM2.5 spatial-temporal variability.Science of The Total Environment,645,1456-1464.
  27. Xu, H.,Bechle, M.J.,Wang, M.,Szpiro, A.A.,Vedal, S.,Bai, Y.Q.,Marshall, J.D.(2019).National PM2.5 and NO2 exposure models for China based on land use regression, satellite measurements, and universal kriging.Science of the Total Environment,655,423-433.