题名

利用地理加權迴歸進行台北都會區二氧化氮之模擬分析

并列篇名

Estimation of NO_2 Variability in Taipei Metropolis Using Geographically Weighted Regression

DOI

10.6574/JPRS.202003_25(1).0001

作者

翁佩詒(Pei-Yi Wong);吳治達(Chih-Da Wu);蘇慧貞(Huey-Jen Su)

关键词

空氣污染 ; 二氧化氮 ; 土地利用 ; 地理加權迴歸 ; Air pollution ; Nitrogen Dioxide (NO2) ; Land-use ; Geographically Weighted Regression (GWR)

期刊名称

航測及遙測學刊

卷期/出版年月

25卷1期(2020 / 03 / 01)

页次

1 - 10

内容语文

繁體中文

中文摘要

二氧化氮(NO_2)為都會區最重要的空氣污染物之一。本研究以台北都會區為研究區,結合環境保護署18個監測站於2000年至2013年月平均空污濃度監測資料、以及土地利用的GIS資料,利用地理加權迴歸(Geographically Weighted Regression, GWR)推估NO_2的時空變異。結果指出,研究期間台北都會區的NO_2濃度呈現逐漸下降的趨勢,由2000年的25.94ppb減少為2013年的21.48ppb;模型分析結果指出,道路與污染具正相關,森林、水體與污染則呈負相關;所建模型之R^2達0.89,具有高度之預測與解釋力。最後利用所建模型推估台北都會區NO_2濃度之空間變異,結果顯示,污染物濃度較高的地區主要集中在台北市以及新北市人口稠密、道路交通發達之地區。

英文摘要

Nitrogen Dioxide (NO_2) is one of the major air pollutants in urban area. In this study, NO_2 concentration observations during 2000 to 2013 were obtained from 18 EPA monitoring stations. Geographically Weighted Regression (GWR) coupled with GIS land-use data was then applied to assess the spatial-temporal variability of NO_2 in Taipei metropolis. The results showed that, a slightly decreasing trend was found in the pollutant level during the studied fourteen years. For example, the averaged NO_2 concentration level was 25.49ppb in 2000 but decreased to 21.48ppb in 2013. Several land-use related variables were selected as important predictors in the developed GWR model. Among them, roads were positively corelated to pollutant levels. Forests and waterbodies showed a negative association. Moreover, the resultant model had a highly explanatory power with the model R^2 of 0.89. Finally, NO_2 variability was illustrated using the developed model. Higher pollutant levels were clustered in the densely populated areas with heavy traffic.

主题分类 工程學 > 交通運輸工程
参考文献
  1. 陳章瑞, C.J.(2013)。以地理加權迴歸模型之空間分析探討都是公園之寧適效益。造園景觀學報,19(1),17-46。
    連結:
  2. 中華民國統計資訊網,2019。縣市重要指標查詢系統,https://statdb.dgbas.gov.tw/pxweb/Dialog/statfile9.asp,引用 2019/11/01。[National Statistics, R.O.C. Taiwan, 2019. Statistical Database, Available at: https://statdb.dgbas.gov.tw/pxweb/Dialog/statfile9.asp, Accessed November 1, 2019. (in Chinese)]
  3. Beelen, R.,Hoek, G.,Vienneau, D.,Eeftens, M.,Dimakopoulou, K.,Pedeli, X.,Tsai, M.Y.,Kunzli, N.,Schikowski, T.,Marcon, A.,Eriksen, K.T.,Raaschou-Nielsen, O.,Stephanou, E.,Patelarou, E.,Lanki, T.,Yli-Tuomi, T.,Declercq, C.,Falq, G.,Stempfelet, M.,Birk, M.,Cyrys, J.,von Klot, S.,Nador, G.,Varro, M.J.,Dedele, A.,Grazuleviciene, R.,Molter, A.,Lindley, S.,Madsen, C.,Cesaroni, G.,Ranzi, A.,Badaloni, C.,Hoffmann, B.,Nonnemacher, M.,Kraemer, U.,Kuhlbusch, T.,Cirach, M.,de Nazelle, A.,Nieuwenhuijsen, M.,Bellander, T.,Korek, M.,Olsson, D.,Stromgren, M.,Dons, E.,Jerrett, M.,Fischer, P.,Wang, M.,Brunekreef, B.,de Hoogh, K.(2013).Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe–The ESCAPE project.Atmospheric Environment,72,10-23.
  4. Bowatte, G.,Lodge, C.,Lowe, A.J.,Erbas, B.,Perret, J.,Abramson, M.J.,Matheson, M.,Dharmage, S.C.(2015).The influence of childhood traffic‐related air pollution exposure on asthma, allergy and sensitization: A systematic review and a meta‐analysis of birth cohort studies.Allergy,70(3),245-256.
  5. Brunekreef, B.,Holgate, S.T.(2002).Air pollution and health.The Lancet,360(9341),1233-1242.
  6. Carslaw, D.C.(2005).Evidence of an increasing NO2/NOx emissions ratio from road traffic emissions.Atmospheric Environment,39(26),4793-4802.
  7. Chan, T.-C.,Chen, M.-L.,Lin, I.-F.,Lee, C.-H.,Chiang, P.-H.,Wang, D.-W.,Chuang, J.-H.(2009).Spatiotemporal analysis of air pollution and asthma patient visits in Taipei, Taiwan.International Journal of Health Geographics,8(1),26.
  8. Chauhan, A.,Krishna, M.,Frew, A.,Holgate, S.(1998).Exposure to nitrogen dioxide (NO2) and respiratory disease risk.Reviews on Environmental Health,13(1-2),73-90.
  9. Dadvand, P.,Rivas, I.,Basagana, X.,Alvarez-Pedrerol, M.,Su, J.,Pascual, M.D.,Amato, F.,Jerret, M.,Querol, X.,Sunyer, J.,Nieuwenhuijsen, M.J.(2015).The association between greenness and traffic-related air pollution at schools.Science of The Total Environment,523,59-63.
  10. Demuzere, M.,Orru, K.,Heidrich, O.,Olazabal, E.,Geneletti, D.,Orru, H.,Bhave, A. G.,Mittal, N.,Feliu, E.,Faehnle, M.(2014).Mitigating and adapting to climate change: Multifunctional and multi-scale assessment of green urban infrastructure.Journal of environmental management,146,107-115.
  11. Ding, L.,Zhu, D.,Peng, D.,Zhao, Y.(2017).Air pollution and asthma attacks in children: A case–crossover analysis in the city of Chongqing, China.Environmental pollution,220,348-353.
  12. Frampton, M.W.,Smeglin, A.M.,Roberts, N.J.,Finkelstein, J.N.,Morrow, P.E.,Utell, M.J.(1989).Nitrogen dioxide exposure in vivo and human alveolar macrophage inactivation of influenza virus in vitro.Environmental Research,48(2),179-192.
  13. Gill, S.E.,Handley, J.F.,Ennos, A.R.,Pauleit, S.(2007).Adapting cities for climate change: the role of the green infrastructure.Built environment,33(1),115-133.
  14. Hu, X.,Waller, L.A.,Al-Hamdan, M.Z.,Crosson, W.L.,Estes, M.G.,Estes, S.M.,Quattrochi, D.A.,Sarnat, J.A.,Liu, Y.(2013).Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression.Environmental Research,121,1-10.
  15. Kabisch, N.,Frantzeskaki, N.,Pauleit, S.,Naumann, S.,Davis, M.,Artmann, M.,Haase, D.,Knapp, S.,Korn, H.,Stadler, J.,Zaunberger, K.,Bonn, A.(2016).Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action.Ecology Society,21(2),39.
  16. Kampa, M.,Castanas, E.(2008).Human health effects of air pollution.Environmental pollution,151(2),362-367.
  17. Lee, A.C.,Maheswaran, R.(2011).The health benefits of urban green spaces: A review of the evidence.Journal of Public Health,33(2),212-222.
  18. Nowak, D.J.,Crane, D.E.,Stevens, J.C.(2006).Air pollution removal by urban trees and shrubs in the United States.Urban Forestry Urban Greening,4(3-4),115-123.
  19. Peters, A.,Liu, E.,Verrier, R.L.,Schwartz, J.,Gold, D.R.,Mittleman, M.,Baliff, J.,Oh, J.A.,Allen, G.,Monahan, K.,Dockery, D.W.(2000).Air pollution and incidence of cardiac arrhythmia.Epidemiology,11(1),11-17.
  20. Song, W.Z.,Jia, H.F.,Li, Z.L.,Tang, D.L.,Wang, C.(2019).Detecting urban land-use configuration effects on NO2 and NO variations using geographically weighted land use regression.Atmospheric Environment,197,166-176.
  21. Wang, T.,Xie, S.D.(2009).Assessment of traffic-related air pollution in the urban streets before and during the 2008 Beijing Olympic Games traffic control period.Atmospheric Environment,43(35),5682-5690.
  22. Wu, C.D.,Chen, Y.C.,Pan, W.C.,Zeng, Y.T.,Chen, M.J.,Guo, Y.L.,Lung, S.C.C.(2017).Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability.Environmental Pollution,224,148-157.
  23. Zhang, Y.W.,Ni, H.,Bai, L.J.,Cheng, Q.,Zhang, H.,Wang, S.,Xie, M.Y.,Zhao, D.S.,Su, H.(2019).The short-term association between air pollution and childhood asthma hospital admissions in urban areas of Hefei City in China: A time-series study.Environmental Research,169,510-516.
被引用次数
  1. (2024)。臺灣地區空氣品質與主要空氣汙染物的年循環變化特徵。地理學報,108,57-75。