题名

合成孔徑雷達干涉產製數值高程模型影響因素評估-以季節像對與多視處理為例

并列篇名

Evaluation of the Factors Influencing InSAR Digital Elevation Model - Case Study on Image Selection and Multi-look Processing

DOI

10.6574/JPRS.202006_25(2).0004

作者

吳彥誼(Yen-Yi Wu);林士淵(Shih-Yuan Lin);任玄(Hsuan Ren)

关键词

合成孔徑雷達干涉技術 ; 數值高程模型 ; 季節像對 ; 多視處理 ; Synthetic Aperture Radar Technique ; Digital Elevation Model ; Seasonal Image Pair ; Multi-Look Processing

期刊名称

航測及遙測學刊

卷期/出版年月

25卷2期(2020 / 06 / 01)

页次

115 - 128

内容语文

繁體中文

中文摘要

合成孔徑雷達干涉(Interferometric Synthetic Aperture Radar, InSAR)技術可以利用雷達資料的相位資 訊取得三維的地表訊息。InSAR 技術常應用於產製數值高程模型(Digital Elevation Model, DEM),然而,雖然此項技術雖已被建立許久且發展成熟,其在應用上仍受到許多限制。本研究之宗旨有二,其一為針對不同季節的像對產製的數值地形模型做探討,其二為觀察多視步驟(Multi-look processing)在不同情況下採用的必要性。研究結果顯示,不論是否採用多視步驟,使用冬季像對可以提升結果精度,其比例最高達66.57%;在多視處理的部分,夏季像對若採用多視處理,精度可以提高15.14%~31.59%,然冬季像對若採用多視處理,精度則普遍降低,最差為-23.17%。

英文摘要

Interferometric Synthetic Aperture Radar (InSAR) is one of the techniques used to extract three-dimensional ground surface information from the phase data recorded in radar images. InSAR technique is often applied to generate digital elevation models (DEMs). Although this technique has been developed maturely for a long time, it is found that the capability to produce high-accuracy DEM is limited. There are two aims in our research: the first is the discussion of using different seasonal dataset to generate DEMs, and the second is the observation the necessity of using multi-look processing in InSAR processing procedure. The result has shown that no matter if the multi-look processing is applied, using winter image pair is helpful to improve the accuracy up to 66.57%. For summer image pair, the accuracy could be enhanced by 15.14% to 31.59% if multi-look processing is applied, while for winter pair, the accuracy is degraded up to 23.17% if multi-look processing is applied.

主题分类 工程學 > 交通運輸工程
参考文献
  1. 內政部資料開放平台,2019。2019 年全臺灣及部分離島 20 公尺網格 DTM 資料 ,https://data.moi.gov.tw/MoiOD/Data/DataDetail.aspx?oid=84CF211B-4788-4FEF-B296-0F292C1DCBB8,引用 2019/06/01。[MOI Open Data, R.O.C Taiwan, 2019. 20 m DTM data in and around Taiwan Island available in 2019, Available at: https://data.moi.gov.tw/MoiOD/Data/DataDetail.aspx?oid=84CF211B-4788-4FEF-B296-0F292C1DCBB8, Accessed June 01, 2019. (in Chinese)]
  2. Braun, A., 2020. Sentinel-1 Toolbox DEM generation with Sentinel-1 Workflow and challenges, Available at:http://step.esa.int/docs/tutorials/S1TBX%20DEM%20generation%20with%20Sentinel-1%20IW%20Tutorial.pdf, Accessed April 18, 2020.
  3. Cumming, I.G.,Wong, F.H.(2004).Digital Processing of Synthetic Aperture Radar Data.Boston, London:Artech House.
  4. Goldstein, R.M.,Werner, C.L.(1998).Radar interferogram filtering for geophysical applications.Geophysical Research Letters,25(21),4035-4038.
  5. Hanssen, R.(2001).Radar Interferometry Data Interpretation and Error Analysis.New York:Springer Netherlands.
  6. Li, F.K.,Goldstein, R.M.(1990).Studies of multibaseline spaceborne interferometric synthetic aperture radars.IEEE Transactions on Geoscience and Remote Sensing,28(1),88-97.
  7. Massonnet, D.,Rossi, M.,Carmona, C.,Adragna, F.,Peltzer, G.,Feigl, K.,Rabaute, T.(1993).The displacement field of the Landers earthquake mapped by radar interferometry.Nature,364(6433),138-142.
  8. Moore, R.K.(1979).Tradeoff between picture element dimensions and noncoherent averaging in side-looking airborne radar.IEEE Transactions on Aerospace and Electronic Systems,15(5),697-708.
  9. Murakami, M.,Tobita, M.,Fujiwara, S.,Saito, T.,Masaharu, H.(1996).Coseismic crustal deformations of 1994 Northridge California earthquake detected by interferometric JERS 1 synthetic aperture radar.Journal of Geophysical Research-Solid Earth,101(B4),8605-8614.
  10. Peltzer, G.,Rosen, P.(1995).Surface displacement of the 17 May 1993 Eureka Valley, California, earthquake observed by SAR interferometry.Science,268(5215),1333-1336.
  11. Rodriguez, E.,Martin, J.M.(1992).Theory and design of interferometric synthetic aperture radars.IEE Proceedings-F Radar and Signal Processing,139(2),147-159.
  12. Rogers, A.E.E.,Ingalls, R.P.(1969).Venus: Mapping the surface reflectivity by radar interferometry.Science,165(3895),797-799.
  13. Ruescas, A.B.,Delgado, J.M.,Costantini, F.,Sarti, F.(2009).Change detection by interferometric coherence in Nasca Lines, Peru (1997–2004).Fringe 2009 Workshop,Frascati, Italy:
  14. UAF, 2018. How to create a DEM from Sentinel-1 Data, Available at: https://asf.alaska.edu/wp-content/uploads/2019/05/create_a_dem_from_sentinel_1_v1.3.pdf , Accessed August 28, 2019.
  15. Vasile, G.,Trouvé, E.,Ciuc, M.,Buzuloiu, V.(2004).General adaptive-neighborhood technique for improving synthetic aperture radar interferometric coherence estimation.Journal of the Optical Society of America A -Optics Image Science and Vision,21(8),1455-1464.
  16. Zebker, H.A.,Rosen, P.A.,Goldstein, R.M.,Gabriel, A.,Werner, C.L.(1994).On the derivation of coseismic displacement fields using differential radar interferometry- The Landers earthquake.Journal of Geophysical Research Solid Earth,99(B10),19617-19634.
  17. Zebker, H.A.,Villasenor, J.(1992).Decorrelation in interferometric radar echoes.IEEE Transactions on Geoscience and Remote Sensing,30(5),950-959.
  18. Zebker, H.A.,Werner, C.L.,Rosen, P.L.,Hensley, S.(1994).Accuracy of topographic maps derived from ERS-1 interferometric radar.Ieee Transactions on Geoscience and Remote Sensing,32(4),823-836.
  19. 交通部中央氣象局,2020。觀測資料查詢,https://eservice.cwb.gov.tw/HistoryDataQuery/index.jsp,引用 2020/04/18。[Central Weather Bureau, 2020. CWB Observation Data Inquire System, CODiS, Available at: https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp, Accessed April 18, 2020.(in Chinese)]