题名

應用低成本雙頻GNSS RTK技術於無人機定位定向之研究

并列篇名

UAV Positioning and Heading Angle Estimation Using Low-Cost Dual-Frequency GNSS Receivers

DOI

10.6574/JPRS.202012_25(4).0004

作者

王士益(Shi-I Wang);劉瑋傑(Wei-Chieh Liu);顏永哲(Yung-Jhe Yan);歐陽盟(Mang Ou-Yang);林修國(Shiou-Gwo Lin)

关键词

全球衛星導航系統 ; 即時動態定位 ; 無人機 ; 航向角 ; GNSS ; RTK ; UAV ; Heading

期刊名称

航測及遙測學刊

卷期/出版年月

25卷4期(2020 / 12 / 01)

页次

241 - 252

内容语文

繁體中文

中文摘要

無人機在戶外定位仰賴全球衛星導航系統(Global Navigation Satellite System, GNSS),透過即時動態定位(Real-Time Kinematic, RTK)技術可達到公分等級的定位精度。無人機利用電子羅盤(E-compass)來取得載具的方向角,但磁力感測器易受干擾產生明顯誤差。若是透過兩組GNSS接收機求得高精度坐標即可求得載具方向角,這可與慣性感測元件(Inertial Measurement Unit, IMU)搭配,經由卡爾曼濾波器輸出穩定的方向角。本文使用兩組PMGN1 GNSS接收機,靜態實驗中RTK定位成功率可達99%,坐標誤差約為1 cm;動態實驗中RTK定位成功率為97%,在兩GNSS都為固定解的情況下能提供精度3度的航向角,使無人機的航向角判別能不單依靠磁力計運作。

英文摘要

Real-Time Kinematic (RTK) technology can provide centimeter level positioning accuracy. In this study, using RTK technology on UAV navigation control is very helpful. Two RTK GNSS receivers place on UAV can provide a heading angle measurement. It can co-work with E-compass to obtain the heading angle of the vehicle. GNSS compass can avoid magnetic disturbance problem. This article uses two sets of PMGN1 GNSS receivers. In static experiment, RTK fix rates can reach to 99%, and the coordinate error is about 1 cm. In dynamic experiment, RTK fix rates are 97%. The accuracy of the heading angle is less than 3 degrees when the baseline of two antenna is about 20 cm. This result can let the UAV heading angle determination not only rely on E-compass.

主题分类 工程學 > 交通運輸工程
参考文献
  1. ArduPilot Dev Team, 2020b. Introducing Copter,Available at: https://ardupilot.org/copter/docs/introduction.html, Accessed December 01, 2020.
  2. ArduPilot Dev Team, 2020a. ArduPilot Code Overview, Available at: https://ardupilot.org/dev/docs/apmcopter-code-overview.html, Accessed December 01, 2020.
  3. Ekaso, D.,Nex, F.,Kerle, N.(2020).Accuracy assessment of real-time kinematics (RTK) measurements on unmanned aerial vehicles (UAV) for direct geo-referencing.Geo-Spatial Information Science,23(2),165-181.
  4. Hugenholtz, C.,Brown, O.,Walker, J.,Barchyn, T.,Nesbit, P.,Kucharczyk, M.,Myshak, S.(2016).Spatial accuracy of UAV-derived orthoimagery and topography: Comparing photogrammetric models processed with direct geo-referencing and ground control points.Geomatica,70(1),21-30.
  5. Rabah, M.,Basiouny, M.,Ghanem, E.,Elhadary, A.(2018).Using RTK and VRS in direct geo-referencing of the UAV imagery.NRIAG Journal of Astronomy and Geophysics,7(2),220-226.
  6. Wikipedia, 2020. MAVLink, Available at: https://en.wikipedia.org/wiki/MAVLink, Accessed December 01, 2020.