题名

基於整體學習演算法於航攝正射影像之物件分類探索-以海岸廢棄物為例

并列篇名

The Study of Orthophoto Image Classification through Ensemble Learning Based on the Aerial Photos: A Case Study on Coastal Waste Image Classification

DOI

10.6574/JPRS.202109_26(3).0004

作者

劉奕洋(Yi-Yang Liu);萬絢(Shiuan Wan)

关键词

整體學習 ; 影像物件分類 ; 資料空間視覺化 ; Ensemble Learning ; Image Object Classification ; Visual Data Space

期刊名称

航測及遙測學刊

卷期/出版年月

26卷3期(2021 / 09 / 01)

页次

181 - 192

内容语文

繁體中文

中文摘要

近年臺灣在氣候變遷及海洋垃圾成長的環境下,多樣化的海岸樣貌正遭受威脅,在海岸廢棄物的議題上刻不容緩。有鑑於當今GIS的蓬勃發展,及遙測技術能夠在短時間內擷取大範圍的量化資訊,能看到有越來越多取代傳統調查方式的實際應用。本研究屬遙測技術結合機器學習的應用,以整體學習(Ensemble learning)之模型訓練方式在海岸廢棄物上進行物件分類實作的可行性,使用隨機森林(Random Forest)演算法及極限樹(Extra Trees)演算法所建構之模型,探討其分類成效差異,將機器分類後的數據將資料空間視覺化以繪製出主題圖。研究成果可應用於海岸廢棄物相關環境保育作業上,將為一經濟且有效的解決方案。

英文摘要

Presently, coastal features of Taiwan are threatened under the environment of climate change and the growth of the marine waste. The issue of coastal waste cannot be delayed any more. The most traditional method of disposing of coastal waste is to organize beach cleaning activities by coastal government agencies. That is, the private environmental groups using a large amount of manpower to manage the coast. The comparison of time cost and implementation efficiency is not ideal. In view of the development of GIS, the ability of remote sensing technology can capture a wide range of data in a short period of time. On the other hands, we can see many practical applications that replace traditional survey methods. This research is based on the application of remote sensing technology combined with machine learning to display the observation of our seashore. In this study, the Ensemble learning model is used to implement object classification. More specifically, Random Forest (RF) algorithm and Extra Trees (ET) algorithm are applied to explore different algorithms. The classification effects of the model constructed by established process are different. The data for the machine learning classification is visualized by the thematic map. The contributions can be applied to coastal waste related environmental studies effectively and practically.

主题分类 工程學 > 交通運輸工程
参考文献
  1. Abdel-Rahman, E.M.,Makori, D.M.,Landmann, T.,Piiroinen, R.,Gasim, S.,Pellikka, P.,Raina, S.K.(2015).The utility of AISA eagle hyperspectral data and random forest classifier for flower mapping.Remote Sensing,7(10),13298-13318.
  2. Ballanti, L.,Blesius, L.,Hines, E.,Kruse, B.(2016).Tree species classification using hyperspectral imagery: A comparison of two classifiers.Remote Sensing,8(6),445.
  3. Breiman, L.(1996).Bagging predictors.Machine Learning,24(2),123-140.
  4. Feng, Q.L.,Liu, J.T.,Gong, J.H.(2015).UAV remote sensing for urban vegetation mapping using random forest and texture analysis.Remote Sensing,7(1),1074-1094.
  5. Guo, C.H.,Liu, M.C.,Lu, M.L.(2021).A Dynamic Ensemble Learning Algorithm based on K-means for ICU mortality prediction.Applied Soft Computing,103,107166.
  6. Luo, Y.Y.,Alvarez, T.L.,Halperin, J.M.,Li, X.B.(2020).Multimodal neuroimaging-based prediction of adult outcomes in childhood-onset ADHD using ensemble learning techniques.NeuroImage: Clinical,26,102238.
  7. Nero., 2018. Hello world machine learning [Web blog message], Available at: https://nerocube.github.io/2018/11/16/hello-world-ml/, Accessed November 1, 2020.
  8. Peng, T.,Chen, X.Y.,Wan, M.,Jin, L.Z.,Wang, X.F.,Du, X.J.,Ge, H.,Yang, X.(2021).The prediction of hepatitis E through ensemble learning.International Journal of Environmental Research and Public Health,18(1),159.
  9. Tripepi, G.,Heinze, G.,Jager, K.J.,Stel, V.S.,Dekker, F.W.,Zoccali, C.(2013).Risk prediction models.Nephrology Dialysis Transplantation,28(8),1975-1980.
  10. Wan, S.,Lei, T. C.,Chou, T. Y.(2010).A novel data mining technique of analysis and classification for landslide problems.Natural Hazards,52(1),211-230.
  11. Wan, S.,Lei, T.C.,Chou, T.Y.(2012).A landslide expert system: Image classification through integration of data mining approaches for multicategory analysis.International Journal of Geographical Information Science,26(4),747-770.
  12. Wang, J. (Ed.)(2008).Data Warehousing and Mining.Hersey, PA, USA:IGI Global.
  13. Wang, Z.,Chen, L.L.,Zhang, J.,Yin, Y.C.,Li, D.D.(2020).Multi-view ensemble learning with empirical kernel for heart failure mortality prediction.International Journal for Numerical Methods in Biomedical Engineering,36(1),e3273.
  14. Wu, H.H.,Zhang, H.Y.,Karwath, A.,Ibrahim, Z.,Shi, T.,Zhang, X.,Wang, K.,Sun, J.X.,Dhaliwal, K.,Bean, D.,Cardoso, V.R.,Li, K.Z.,Teo, J.T.,Banerjee, A.,Gao-Smith, F.,Whitehouse, T.,Veenith, T.,Gkoutos, G.V.,Wu, X.D.,Dobson, R.,Guthrie, B.(2021).Ensemble learning for poor prognosis predictions: A case study on SARS-CoV-2.Journal of the American Medical Informatics Association : JAMIA,28(4),791-800.
  15. Zhang, C.(Ed.),Ma, Y.(Ed.)(2012).Ensemble Machine Learning: Methods and Applications.Boston, MA, USA:Springer.