题名 |
自監督式深度學習影像匹配應用於福衛光學衛星影像幾何校正 |
并列篇名 |
Self-supervised Deep-learning-based Image Matching for FORMOSAT Optical Satellite Image Orthorectification |
DOI |
10.6574/JPRS.202306_28(2).0001 |
作者 |
吳菉(Lu Wu);張雅筑(Ya-Chu Chang);林柏毅(Bo-Yi Lin);林昭宏(Chao-Hung Lin);曾義星(Yi-Hsing Tseng);張立雨(Li-Yu Chang);張莉雪(Li-Hsueh Chang);李彥玲(Yen-Ling Lee) |
关键词 |
幾何校正 ; 有理函數模型 ; 深度學習 ; 基於特徵的影像匹配 ; 光學衛星影像 ; Optical Satellite Image ; Image Orthorectification ; Rational Function Model ; Deep Learning ; Feature-Based Image Matching |
期刊名称 |
航測及遙測學刊 |
卷期/出版年月 |
28卷2期(2023 / 06 / 01) |
页次 |
63 - 81 |
内容语文 |
繁體中文;英文 |
中文摘要 |
標準幾何校正流程在獲取控制點上花費大量人力及時間,為使衛星影像呈現精確的幾何成像,且提升獲取衛星影像之效率,本研究提出一新穎的自動化衛星影像幾何校正流程。藉由自監督深度學習影像匹配演算法及影像匹配策略,於衛星影像中自動化獲取更多的顯著特徵作為影像控制點,使得衛星影像幾何校正流程更穩健且便捷。實驗結果表明,自動化幾何校正流程不僅具穩定性且具適應性,幾何校正結果在福衛五號2米空間解析度下誤差約為2至4像元。 |
英文摘要 |
The standard orthorectification process takes a lot of manpower and time to obtain control points. To correctly represent the image geometry on satellite images and improve the efficiency of satellite image orthorectification, a novel method for automatic satellite image orthorectification is proposed. In this study, a robust satellite image matching process is processed to obtain image control points, which adopted. Different from traditional labor-intensive methods, a novel image matching method is adopted to find image control points both on target images and an orthorectified reference image, which is adopted self-supervised deep learning image matching algorithm. This strategy makes the ortho-rectification process become automatic, robust, and attempts to distinguish more salient features than traditional methods in satellite images. The experimental results show that the automatic orthorectification process is not only stable but also adaptable. The quantity assessment is performed using root mean square error, and the accuracy of satellite image orthorectification result is 2 to 4 pixels under the 2-meter spatial resolution of FORMOSAT-5 images. |
主题分类 |
工程學 >
交通運輸工程 |
参考文献 |
|