题名

應用Taiwan Data Cube於多時期衛星影像之崩塌地分析

并列篇名

Landslide Area Analysis with Temporal Satellite Images by Using Taiwan Data Cube

DOI

10.6574/JPRS.202306_28(2).0002

作者

黃鈺涵(Yu-Han Huang);曾義星(Yi-Hsing Tseng)

关键词

Taiwan Data Cube ; 衛星影像時間序列 ; 常態化差異植生指標 ; 最大似然分類 ; Taiwan Data Cube (TWDC) ; Satellite Image Time Series (SITS) ; Normalized Difference Vegetation Index (NDVI) ; Maximum Likelihood Classification (MLC)

期刊名称

航測及遙測學刊

卷期/出版年月

28卷2期(2023 / 06 / 01)

页次

83 - 102

内容语文

繁體中文;英文

中文摘要

臺灣受地質和地理環境影響,崩塌災害頻繁發生,然而遙感探測的特點對於監測分析環境敏感地至關重要。本研究基於衛星影像時間序列概念,透過Taiwan Data Cube平台建立環境敏感地監測模型,進行常態化差異植生指標計算以及最大似然分類法,在時間面向中,可以觀察出該地環境的長期趨勢與變化;在空間面向中,則可以找出崩塌地識別之門檻值,藉由影像差分法判斷新生崩塌地的面積變化以及位置。本研究以六龜區及梅山明隧道作為試驗區,經由建立衛星影像時間序列,達到解析區域時空變化的目標,讓地理空間資訊應用更加全面。

英文摘要

Due to geographical and geological factors, typhoons hit Taiwan frequently. It may cause serious disasters, so monitoring the condition of landslide area is critical. Based on the concept of satellite image time series (SITS), this study is to establish a long-term monitoring model by Normalized Difference Vegetation Index (NDVI) calculations and Maximum Likelihood Classification (MLC). For the temporal view, long-term changes in geologically sensitive area can be found out. For the spatial view, the interpretation standard can also be identified, and the location of the new landslide can also be distinguished by "Image Differencing". This study selects "Liouguei District" and "Meishan open-cut tunnel" as the regions of interest. Through the establishment of satellite image time series, the goal of analyzing regional temporal and spatial changes is achieved, making the application of geospatial information more comprehensive.

主题分类 工程學 > 交通運輸工程
参考文献
  1. Aburas, M.M.,Abdullah, S.H.,Ramli, M.F.,Ash’aari, Z.H.(2015).Measuring land cover change in Seremban, Malaysia using NDVI index.Procedia Environmental Sciences,30,238-243.
  2. Attri, P.,Chaudhry, S.,Sharma, S.(2015).Remote sensing & GIS based approaches for LULC change detection–A review.International Journal of Current Engineering and Technology,5(5),3126-3137.
  3. Campbell, J.B.,Wynne, R.H.(2011).Introduction to Remote Sensing.New York, NY:Guilford Press.
  4. Cheng, M.C.,Chiou, C.R.,Chen, B.,Liu, C.,Lin, H.C.,Shih, I.L.,Chung, C.H.,Lin, H.Y.,Chou, C.Y.(2019).Open data cube (ODC) in Taiwan: The initiative and protocol development.Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019),Yokohama, Japan:
  5. Giuliani, G.,Chatenoux, B.,De Bono, A.,Rodila, D.,Richard, J.-P.,Allenbach, K.,Dao, H.,Peduzzi, P.(2017).Building an earth observations data cube: Lessons learned from the Swiss data cube (sdc) on generating analysis ready data (ard).Big Earth Data,1(1-2),100-117.
  6. Guyet, T.,Nicolas, H.(2016).Long term analysis of time series of satellite images.Pattern Recognition Letters,70,17-23.
  7. Huang, S.,Tang, L.,Hupy, J.P.,Wang, Y.,Shao, G.(2021).A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing.Journal of Forestry Research,32,1-6.
  8. Karthik, A.,Shivakumar, B.R.(2017).Change detection using image differencing: A study over area surrounding Kumta, India.Proceedings of the International Conference on Electrical, Computer and Communication Technologies (ICECCT2017),Coimbatore, India:
  9. Killough, B.(2018).Overview of the open data cube initiative.Proceedings of the IEEE International Geoscience and Remote Sensing Symposium(IGARSS 2018),Valencia, Spain:
  10. Lillesand, T.,Kiefer, R.,Chipman, J.(2004).Remote Sensing and Image Interpretation.New York, USA:John Wiley & Sons Inc.
  11. Lira, C.,Lousada, M.,Falcão, A.P.,Gonçalves, A.,Heleno, S.,Matias, M.,de Sousa, A.J.,Pereira, M.J.,Pina, P.,Oliveira, R.,Almeida, A.B.(2011).Automatic detection of landslide features with remote sensing techniques: Application to Madeira Island.Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2011),Vancouver, BC, Canada:
  12. Mas, J.F.(1999).Monitoring land-cover changes: Acomparison of change detection techniques.International Journal of Remote Sensing,20(1),139-152.
  13. Schowengerdt, R.A.(2006).Remote Sensing: Models and Methods for Image Processing.Elsevier.
  14. Sisodia, P.S.,Tiwari, V.,Kumar, A.(2014).Analysis of supervised maximum likelihood classification for remote sensing image.Proceedings of the International Conference on Recent Advances and Innovations in Engineering (ICRAIE 2014),Jaipur, India:
  15. Soomro, A.S.,Rajput, A.Q.K.,Solangi, S.H.(2012).The study of change after occurrence of earthquake induced landslide disaster in 2005 in Balakot, Pakistan.Mehran University Research Journal of Engineering & Technology,31(3),461-468.
  16. Strobl, P.,Baumann, P.,Lewis, A.,Szantoi, Z.,Killough, B.,Purss, M.,Craglia, M.,Nativi, S.,Held, A.,Dhu, T.(2017).The six faces of the data cube.Proceedings of the Conference on Big Data from Space (BiDS’17),Toulouse, France:
  17. Sun, J.B.,Yang, J.Y.,Zhang, C.,Yun, W.J.,Qu, J.Q.(2013).Automatic remotely sensed image classification in a grid environment based on the maximum likelihood method.Mathematical and Computer Modelling,58(3-4),573-581.
  18. Xi, W.,Du, S.,Wang, Y.C.,Zhang, X.(2019).A spatiotemporal cube model for analyzing satellite image time series: Application to land-cover mapping and change detection.Remote Sensing of Environment,231,111212.
  19. Zhu, X.,Helmer, E.H.(2018).An automatic method for screening clouds and cloud shadows in optical satellite image time series in cloudy regions.Remote Sensing of Environment,214,135-153.
  20. 王慶雄, C.H.,陳正偉, C.W.,賴盈吉, Y.C.,藍宇良, Y.L.(2021)。台 20 線南橫公路-梅山明隧道重建三部曲。臺灣公路工程,47(2),36-56。
  21. 李品毅, P.I.(2021)。Taiwan, ROC,國立成功大學地球科學系=National Cheng Kung University。
  22. 周晏勤, Y.C.,蔡尹萱, Y.H.,陳昭旭, C.S.,陳時祖, S.H.(2006)。以高解析度衛星影像快速調查崩塌地。鑛冶:中國鑛冶工程學會會刊,50(4),117-124。
  23. 陳亮全, L.C.,林李耀, L.Y.,李維森, W.S.,謝龍生, L.S.,李欣輯, H.C.,陳聯光, L.K.(2011)。,國家災害防救科技中心=National Science and Technology Center for Disaster Reduction。
  24. 黃雅莉, Y.L.(2011)。Taiwan, ROC,國立屏東科技大學森林系=National Pingtung University of Science and Technology。