题名

應用資料包絡分析法與自組性演算法最佳化來自實驗設計之多反應變數

并列篇名

Optimization of Multiple Responses from Designed Experiments by Using Data Envelopment Analysis and the Group Method of Data Handling

作者

蔡志偉(Chih-Wei Tsai);唐麗英(Lee-Ing Tong)

关键词

多反應變數 ; 實驗設計 ; 資料包絡分析法 ; 自組性演算法 ; 反應曲面法 ; multiple responses ; design of experiments ; data envelopment analysis ; group method of data handling ; response surface method

期刊名称

品質學報

卷期/出版年月

15卷4期(2008 / 08 / 01)

页次

259 - 269

内容语文

繁體中文

中文摘要

實驗設計(Design of Experiments, DOE)是工業界常用來規劃實驗及找出最佳配方或改善產品∕製程的統計方法,但此法僅能分析單反應之實驗數據,對於具有多個反應之實驗,中外文獻所提出的最佳化方法多以探討田口方法(Taguchi methods)爲主,故本研究針對由DOE 所得的具有多反應之實驗,利用相對效率的概念提出一套最佳化的流程。本研究首先利用資料包絡分析法(Data Envelopment Analysis, DEA)可有效分析多投入多產出之特性,來分析由DOE所得的具有多個反應之實驗數據,將多個反應轉換成一個效率指標,然後再以自組性演算法(Group Method of Data Handling, GMDH)適配出一個效率估計模型,根據此效率估計模型即可求得同時最佳化多反應之最佳配方。本研究方法之優點是可避免應用反應曲面法(Response Surface Method, RSM)或望想函數(desirability function)尋求最佳配方時,必須針對多反應建立多條求解模型才能進行最佳化的缺失。本研究最後以文獻上的四個案例,與新竹科學園區某積體電路公司的一個蝕刻製程實驗,來說明本研究方法之有效性及可行性,由案例的驗證結果顯示出本研究方法確實具實務之應用價值。

英文摘要

Design of Experiments (DOE) is often utilized to determine the optimal factor-level combination or enhance product/process quality in industry. However, DOE is used to design and analyze experimental data with a single response. Optimization of multiple responses simultaneously in DOE has received little attention. Therefore, by applying relative efficiency, this work presents an optimization procedure for multiple responses. Given the features of efficiently analyzing multiple inputs and multiple outputs, the relative efficiency of each factor-level combination for an experiment with multiple responses is identified by using Data Envelopment Analysis (DEA). Group Method of Data Handling (GMDH) is then utilized to fit a model for determining the efficiency of various factor-level combinations. An optimal factor-level combination is then determined according to the GMDH model. Through the demonstrated cases, the proposed procedure can effectively optimize multiple responses simultaneously.

主题分类 社會科學 > 管理學
参考文献
  1. Allen, T. T.,Yu, L.(2002).Low-cost response surface methods from simulation optimization.Quality and Reliability Engineering International,18,5-17.
  2. Ames, A. E.,Mattucci, N.,MacDonald, S.,Szonyi, G.,Hawkins, D. M.(1997).Quality loss functions for optimization across multiple response surfaces.Journal of Quality Technology,29(3),339-346.
  3. Charnes, A.,Cooper, W. W.,Rhodes, E.(1978).Measuring the efficiency of decision-making units.European Journal of Operational Research,2,429-444.
  4. Cooper, W. W.,Seiford, L. M.,Tone, K.(2000).Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References, and DEA-Solver Software.Boston:Kluwer Academic Publishers.
  5. Derringer, G. C.(1994).A balancing act: optimizing a product`s properties.Quality Progress,27(6),51-58.
  6. Derringer, G.,Suich, R.(1980).Simultaneous optimization of several response variables.Journal of Quality Technology,12(4),214-219.
  7. Farlow, S. J.(1981).The GMDH algorithm of Ivakhnenko.American Statistician,35(4),210-215.
  8. Farlow, S. J.,Farlow, S. J.,Dekker, M. (edited)(1984).Self-Organizing Methods in Modeling: GMDH Type Algorithms.New York:
  9. Istadi and Amin, N. A. S.(2005).A hybrid numerical approach for multi-responses optimization of process parameters and catalyst compositions in CO2OCM process over CaO-MnO/CeO2 catalyst.Chemical Engineering Journal,106(3),213-227.
  10. Ivakhnenko, A. G.(1970).Heuristic self-organization in problems of engineering cybernetics.Automatica,6,207-219.
  11. Jayaram, J. S. R.,Ibrahim, Y.(1997).Robustness for multiple response problems using a loss model.International Journal of Quality Science,2(3),199-205.
  12. Köksoy, O.(2005).Dual response optimization: the desirability approach.International Journal of Industrial Engineering: Theory Applications and Practice,12(4),335-342.
  13. Lu, D.,Antony, J.(2002).Optimization of multiple responses using a fuzzy-rule based inference system.International Journal of Production Research,40(7),1613-1625.
  14. Myers, R. H.,Montgomery, D. C.(1995).Response Surface Methodology-Process and Product Optimization Using Designed Experiments.New York:John Wiley & Sons.
  15. Myers, R. H.,Montgomery, D. C.,Vining, G. G.,Borror, C. M.,Kowalski, S. M.(2004).Response surface methodology: a retrospective and literature survey.Journal of Quality Technology,36(1),53-77.
  16. Oh, S. K.,Pedrycz, W.(2002).The design of self-organizing polynomial neural networks.Information Sciences,141,237-258.
  17. Theppaya, T.,Prasertsan, S.(2004).Optimization of rubber wood drying by response surface method and multiple contour plots.Drying Technology,22(7),1637-1660.
  18. Tong, L. I.,Chen, C. C.,Wang, C. H.(2007).Optimization of multi-response processes using the VIKOR method.International Journal of Advanced Manufacturing Technology,31,1049-1057.
  19. Tong, L. I.,Wang, C. H.,Chen, C. C.,Chen, C. T.(2004).Dynamic multiple responses by ideal solution analysis.European Journal of Operational Research,156(2),433-444.
  20. Tong, L. I.,Wang, C. H.,Chen, H. C.(2005).Optimization of multiple responses using principal component analysis and technique for order preference by similarity to ideal solution.International Journal of Advanced Manufacturing Technology,27,407-414.
  21. Vining, G.,Myers, R.(1990).Combining Taguchi and response surface philosophies: a dual response approach.Journal of Quality Technology,22(1),38-45.
  22. Wu, F. C.,Chyu, C. C.(2004).Optimization of robust design for multiple quality characteristics.International Journal of Production Research,42(2),337-354.
被引用次数
  1. 劉浚明、楊景彥(2014)。活性炭濾心器之穩健設計。品質學報,21(5),329-348。