题名

自我相關殘差管制圖模型選取之研究

并列篇名

Model Selection for Autocorrelated Residual Control Charts

作者

潘浙楠(Jen-Nan Pan);席嘉澤(Chi-Tse His);陳曉倩(Sheau-Chiann Chen)

关键词

指數加權移動平均管制圖 ; 累和管制圖 ; 模型選取準則 ; CUSUM control chart ; EWMA control chart ; information criterion ; model order selection

期刊名称

品質學報

卷期/出版年月

16卷4期(2009 / 08 / 31)

页次

245 - 260

内容语文

繁體中文

中文摘要

隨著電腦科技的日新月異及生產過程在自動化技術不斷改進下,蒐集製程資料的間隔時間已大幅縮短,使得樣本間存在著高度自我相關性。因此,若將此類資料以傳統的管制圖進行監控極易產生誤判,而導致不必要的成本浪費。近年來已有多位學者藉由不同統計模型的選取準則協助廠商選擇正確的時間數列模型,這些準則依其不同統計模型,大致可分爲具有漸進有效性(如AIC和AICC)與一致性(如BIC與SIC)之準則兩大類,另有學者提出結合前述兩類優點之WIC準則。基於上述模型選取準則各有其適用性,因此本研究著重於不同樣本數情形下,如何利用適當的準則選取正確的統計模型。結果顯示WIC準則較爲穩健,這可作爲業界在處理自我相關製程資料與監控時的重要參考。

英文摘要

When the process data are correlated, one should first select a suitable model to fit the data and then use the traditional control charts to monitor the change of residual. The effectiveness of using residual control charts depend crucially on the appropriateness of the model selected. In this paper, several order-selection criteria including AICC (bias-corrected Akaike's information criterion), BIC (Akaike's Bayesian modification of AIC), and WIC (Weighted average Information Criterion) are used to select the model order when the process data follows a time series model like ARMA (Auto-Regressive and Moving Average). The performances of these criteria are further demonstrated by simulation under different sample size as well as a numerical example. The results show that the performances of model selection using WIC are more robust than other criteria such as AIC, AICC, BIC and SIC.

主题分类 社會科學 > 管理學
参考文献
  1. 潘浙楠、陳必達(2004)。自我相關環保管制圖的比較研究-以台北地區空氣污染資料爲例。中國統計學報,42(1),31-62。
    連結:
  2. Adams, B. M.,Tseng, L. T.(1998).Robustness of forecast-based monitoring schemes.Journal of Quality Technology,30(4),328-339.
  3. Akaike, H.(1974).A new look at the statistical model identification.IEEE Transactions on Automatic Control,19(6),716-723.
  4. Akaike, H.(1978).A Bayesian analysis of the minimum AIC procedure.Annals of the Institute of Statistical Mathematics,30(1),9-14.
  5. Alwan, A. J.,Alwan, L. C.(1994).Monitoring autocorrelated processes using multivariate quality control charts.Proceedings of the Decision Sciences Institute Annual Meeting
  6. Alwan, L. C.,Roberts, H. V.(1988).Time-series modeling for statistical process control.Journal of Business and Economic Statistics,6(1),87-95.
  7. Crowder, S. V.(1987).A simple method for studying run-length distributions of exponentially weighted moving average charts.Technometrics,29(4),401-407.
  8. Crowder, S. V.(1989).Design of exponentially weighted moving average schemes.Journal of Quality Technology,21(3),155-162.
  9. Gan, F. F.(1991).An optimal design of CUSUM quality control charts.Journal of Quality Technology,23,279-286.
  10. Harris, T. J.,Ross, W. H.(1991).Statistical process control procedure for correlated observations.Canadian Journal of Chemical Engineering,69(1),48-57.
  11. Hunter, J. S.(1986).The exponentially weighted moving average.Journal of Quality Technology,18,203-210.
  12. Hurvich, C. M.,Tsai, C. L.(1989).Regression and time series model selection in small samples.Biometrika,76(2),297-307.
  13. Lee, H. L.,So, K. C.,Tang, C. S.(2000).The value of information sharing in a two-level supply chains.Management Science,46(5),626-643.
  14. Ljung, G. M.,Box, G. E. P.(1978).On a measure of lack of fit in time series models.Biometrika,65(2),297-303.
  15. Lu, C. W.,Reynolds, M. R.(2001).CUSUM charts for monitoring an autocorrelated processes.Journal of Quality Technology,33(3),316-334.
  16. Lu, C. W.,Reynolds, M. R.(1999).EWMA control charts for monitoring the mean of autocorrelated processes.Journal of Quality Technology,31(2),166-188.
  17. Lucas, J. M.,Saccucci, M. S.(1990).Exponentially weighted moving average control schemes: properties and enhancements.Technometrics,32(1),1-12.
  18. Montgomery, D. C.(2005).Introduction to Statistical Quality Control.New York:Wiley.
  19. Montgomery, D. C.,Mastrangelo, C. M.(1991).Some statistical process control methods for autocorrelated data.Journal of Quality Technology,23(3),179-193.
  20. Runger, G. C.,Willemain, T. R.,Prabhu, S.(1995).Average run lengths for CUSUM control charts applied to residuals.Communication in Statistics-Theory and Methods,24(1),273-282.
  21. Schwarz, G.(1978).Estimating the dimension of a model.Annals of Statistics,6,461-464.
  22. Wardell, D. G.,Moskowitz, H.,Palnte, R. D.(1994).Run-length distributions of special-cause charts for correlated processes.Technometric,36(1),3-17.
  23. Wu, T. J.,Sepulveda, A.(1998).The weighted average information criterion for order selection in time series and regression models.Statistics & Probability Letters,39(1),1-10.
  24. Yashchin, E.(1993).Performance of CUSUM control schemes for serially correlated observations.Technometrics,35(1),37-52.
  25. Zhang, H. M.,Wang, P.(1993).A new way to estimate orders in time series.Journal of Time Series Analysis,15(5),545-559.
  26. 潘浙楠、林明毅(1999)。在製程平均微量變動下管制圖正確選用之探討與研究。品質學報,6(1),1-28。
被引用次数
  1. 陳珈瑋、唐麗英、王沛如(2013)。結合CUSUM管制圖之參數設計與自組性演算法建立股票買賣決策系統。科技管理學刊,18(2),39-62。
  2. 錢才瑋、劉巡宇、邱仲慶(2014)。利用管制圖偵測財務報表科目異常之成效探討。醫務管理期刊,15(3),258-276。