题名

Control Chart Pattern Recognition Using Wavelet Analysis and Neural Networks

并列篇名

利用小波分析和類神經網路辨識管制圖之非隨機樣式

作者

鄭慧萍(Hui-Ping Cheng);鄭春生(Chuen-Sheng Cheng)

关键词

管制圖 ; 樣式辨認 ; 小波分析 ; 特徵萃取 ; control chart ; pattern recognition ; wavelet analysis ; feature extraction

期刊名称

品質學報

卷期/出版年月

16卷5期(2009 / 10 / 31)

页次

311 - 321

内容语文

英文

中文摘要

本文提出一個修正之自組織映射類神經網路,應用於管制圖非隨機樣式之分析。研究目的是在沒有任何有關非隨機性樣式之事前資訊下,發展一個樣式之分群方法。此分群方法爲兩階段之程序,包含樣式之形成和合併。本研究利用小波分析來萃取非隨機性樣式之重要特徵,作爲分群方法之輸入向量。利用模擬和實際數據所獲得之實驗結果顯示,本文所提出之分群程序優於傳統之方法。由原始數據所萃取之特徵可以改善類神經網路之辨識績效。

英文摘要

Control charts are useful tool in detecting out-of-control situations in process data. There are many unnatural patterns that may exist in process data indicating the process is out of control. The presence of unnatural patterns implies that a process is affected by assignable causes, and corrective actions should be taken. Identification of unnatural patterns can greatly narrow the set of possible causes that must be investigated, and thus the diagnostic work could be reduced in length. This paper presents a modified self-organizing neural network developed for control chart pattern analysis. The aim is to develop a pattern clustering approach when no prior knowledge of the unnatural patterns is available. This paper also investigates the use of features extracted from wavelet analysis as the components of the input vectors. Experimental results and comparisons based on simulated and real data show that the proposed approach performs better than traditional approach. Our research concluded that the extracted features can improve the performance of the proposed neural network.

主题分类 社會科學 > 管理學
参考文献
  1. Al-Assaf, Y.(2004).Recognition of control chart patterns using multi-resolution wavelets analysis and neural network.Computers and Industrial Engineering,47(1),17-29.
  2. Cheng, C. S.(1997).A neural network approach for the analysis of control chart patterns, International.Journal of Production Research,35(3),667-697.
  3. Cheng, C. s.(1989).Arizona Scare University. Tempe. Arizona.
  4. Cheng, C. S.,Hubele, N. F.(1996).A pattem recognition algorithm for an x-bar control chart.IIE Transactions,28(3),215-224.
  5. Cheng, H. P.,Cheng, C. S.(2008).Denoising and feature extraction for control chart pattern recognition in autocorrelated processes.International Journal of Signal and imaging Systems Engineering,1(2),115-126.
  6. Cub, H. S.,Hsieh, Y. C.(1999).A neural network based model for abnormal pattern recognition of control charts.Computers and Industrial Engineering,36(1),97-108.
  7. Cuh, H, S. ,Tannock. J. D. T.(1999).Recognition of control chart concorrent patterns using a neural network approach.International Journal of - Production Research,37(8),1743-1765.
  8. Gauri, S. K. ,Chakeaborty. S.(2009).Recognition of control chart patterns using improved selection of features.Computers and Industrial Engineering,56(4),1577-1588.
  9. Hassan, A.,Bakslt, M. S. N.,Shaharortn, A. M.,Jamaluddin, H.(2003).Improved S P C chart pattern recognition using statistical features.International Journal of Production Research,41(7),1587-1603.
  10. Hwanrg, H. B.,Hubele, N. P.(1993).Back-propagation pattern recognizers for X-bar control chart: methodology and performance.Computers and Industrial Engineering,24(2),219-235.
  11. Hwarng, H. B.,Hubele, N. F.(1993).X-bar chart pattern identification through efficient off-line neural network training.I I E Transactions,25,27-40.
  12. Jang, K. Y.,Yang, K.,Kang, C.(2003).Application of artificial neural network to identify non-random variation patterns on the run chart in automotive assembly process.International anal Journal of Production Research,41(6),1239-1254.
  13. Kaiser, G(1998).The fast transtform-gateway to wavelets.IEEE Potentials,April\May,34-37.
  14. Kohonen, V.(2004).Self -Organisation and Associative Memory.Berlin:Springer-Verlag.
  15. Math Works.(2004).MATL 4B 7,0 User's Guide.Natick, Mass:Math Works Inc.
  16. Minitab(2004).Minitab 140 Users Guide.USA:Minitab. Inc.
  17. Newland, P. B.(1993).An introduction to Random Vibrations.New York:Spectral & Wavelet Analysis.
  18. Pacella, M.,Semeraro, Q.,Anglani, A.(2004).Adaptive resonance theory-based neural algorithms for manufacturing process quality control.International journal 0f production Research,42(21),4581-4607.
  19. Perry, M. B.,Spoerre, J. K.,Velasco, T.(2001).Control chart pastern recognition using back propagation artificial neural networks.International Journal of Production Research,39(15),3399-3418.
  20. Pham, D. T.,Oztemel, E.(1994).Control chart pattern, recognition using learning vector quantization networks.International Journal of Production Research,32(3),721-729.
  21. Pham, D. T.,Want, M. A.(1997).Feature-bated control chart pattern recognition.International Journal of Production Research,35(7),1875-1890.
  22. Pham, P. T.,Chan, A. B.(1998).Control chart pattern recognition using a new type of self-organizing neural network.Proceedings of the .Institution of Mechanical Engineers, Port 1: Journal of Systems and Control Engineering,212(2),115-127.
  23. Pham, U, T.,Oztemel, B.(1992).Control chart pattern recognition using neural network?.Journal of Systems Engineering,2(4),256-262.
  24. Pham,, P. T.,Chan, A. B.(2001).Unsupervised adaptive resonance theory neural networks for control chart pattern recognition.Proceedings of the Instilution of Mechanical Engineers, Port B: Journal of Engineering Manufacture,215(1),59-67.
  25. Smith, A. E.(1994).X-bar and R control chart interpretation using neural computing.International Journal of Production Research,32(2),309-320.
  26. Wang, C. H.,Kuo, W.,Qi, H.(2007).An integrated approach for process monitoring using wavelet analysis and competitive neural network.International Journal of Production Research,45(1),227-244.
  27. Wani, M, A.,Pham, P. T.(1999).Efficient control chart pattern recognition through synergistic and distributed artificial neural networks.Proceedings of the Institution of Mechanical Engineers, Port B: Journal of Engineering Manufacture,213(2),157-169.
  28. Western Electric Company(1958).Statistical Quality Control Handbook.Indiana:Western Electric.
  29. Yang, J. H.,Yang, M. S.(2005).A control chart pattern recognition system using a statistical correlation coefficient method.Computers and Industrial Engineering,48(2),205-221.
  30. Yang, M. S.,Yang, I. H.(2002).A fuzzy-soft teaming-vector- quantization for. control. Chart pattern recognition.International Journal of Production Research,40(12),2721-2731.
被引用次数
  1. 鄭春生、黃國格(2013)。整合獨立成分分析與統計製程管制圖於產品件內和件間變異監控之應用。品質學報,20(1),137-154。