题名

動態加權下貝氏逐次抽樣之研究

并列篇名

A Study on Dynamic Weighted for Bayesian Sequential Sampling

作者

黃允成(Yun-Cheng Huang);潘信佐(Hsin-Tso Pan);林淑萍(Shu-Ping Lin)

关键词

抽樣檢驗 ; 逐次抽樣 ; 貝氏估計法 ; 動態加權平均 ; sequential sampling ; sampling inspection ; Bayesian estimation method ; dynamic weighted average method

期刊名称

品質學報

卷期/出版年月

17卷5期(2010 / 10 / 31)

页次

389 - 401

内容语文

繁體中文

中文摘要

本文針對破壞性檢驗或高檢驗成本之產品檢驗進行研究,在考量檢驗成本及因抽樣誤差所造成之誤判損失成本情況下,建立一適當之數學分析模式。由於母體不良率未知,因此本文利用動態加權平均的概念對母體不良率進行估計,求得母體不良率之後驗機率,並建構一期望總損失成本函數,經由電腦數值模擬分析,找出使總損失成本最小化之最適抽樣檢驗個數。此外,再運用逐次抽樣檢驗方法,在每一逐次抽樣中,決定是否停止抽樣或繼續抽樣,據此建構出可使期望總損失成本最小化之逐次抽樣決策圖。本文列舉一數值範例進行驗證,並提出三點具體結論以供後續研究與實務應用之參考。

英文摘要

In this paper, we focus our attention on sample size for destructive inspection, and under the considerations of inspection cost and cost of sampling error. This paper built a mathematical model to determine the optimal sample size to minimize the total expected cost. Because the population defective rate is unknown, therefore this paper applied dynamic weighted average method to estimate the population parameter. We can find out the posterior probability density function for defective rate of population, and set up an expected total losses function to search for the optimal solution. Applying computerized numerical analysis method, we can find out the optimal sample size that minimizes the total losses. Furthermore, we used the concept of sequential sampling, then we draw a sample and inspect it in each sequential observation to determine whether to stop sampling and then making decision or not, and the decision chart for sequential sampling is constructed. Finally, three conclusions are drawn for future studies and practical applications.

主题分类 社會科學 > 管理學
参考文献
  1. Kim, W. K.(2004).Sequential sampling plan of the dependent stochastic process.Journal of Chinese Institute of Industrial Engineers,21(1),75-81.
    連結:
  2. Basu, A. P.(ed.)(1986).Reliability and Quality and Control.Amsterdam, North-Holland:
  3. Berger, J. O.(1985).Statistical decision theory and Bayesian analysis.New York:Springer-Verlag.
  4. Bonett, D. G.,Woodward, J. A.(1994).Sequential defect removal sampling.Management Science,40(7),898-902.
  5. Chen, S. L.,Chung, K. J.(1994).Inspection error effects on economic selection of target value for a production process.European Journal of Operational Research,79(2),311-324.
  6. Lam, Y.,Li, K. H.,Ip, W. C.,Wong, H.(2006).Sequential variable sampling plan for normal distribution.European Journal of Operational Research,172(1),127-145.
  7. Moskowitz, H.,Tang, K.(1992).Bayesian variables acceptance-sampling plans: quadratic loss function and step-loss function.Technometrics,34(3),340-347.
  8. Ronen, B.,Spector, Y.(1995).Evaluating sampling strategy under two criteria.European Journal of Operational Research,80(1),59-67.
  9. Wang, H. J.,Chien, C. F.(2000).A proposed Bayesian inference framework and the property of the likelihood function.Journal of Management and Systems,7(3),305-326.
  10. 曾豪傑(2002)。碩士論文(碩士論文)。國立台灣科技大學工業管理系。
  11. 黃允成(2001)。考慮損失成本下破壞性檢驗最適抽樣個數之研究─以農產品批購為例。工業工程學刊,18(1),96-108。
  12. 黃彥彰(2007)。碩士論文(碩士論文)。屏東科技大學工業管理系。
  13. 溫鈺如(2006)。碩士論文(碩士論文)。屏東科技大學工業管理系。