英文摘要
|
The calculation of MTBF (mean time between failures) is an important task in reliability life data analysis. Using different distributions, the values of mean time between failures are always different. This paper investigates two different approaches to obtaining the TFT-LCD panel life. One is the accelerated demonstration life testing which is performed at the reliability lab during the panel development stage, and the other approach is based on field return data from the repair center. The maximum likelihood estimation method is used to get the log-likelihood value of the different distributions, including the Weibull distribution, normal distribution, lognormal distribution and exponential distribution. The distribution of the maximum log-likelihood is chosen for the optimum TFT-LCD panel life distribution. We also use the maximum likelihood estimates to get the parameters of the distribution and calculate the panel life value. The deviation of the life got from the accelerated demonstration life testing data and the field return data analysis is also discussed in this paper.
|
参考文献
|
-
Lin, Y. C.,Lee, P. H.,Torng, C. C.(2009).Determine the optimal time and temperature level of accelerated burn-in test.Journal of Quality,16(4),281-290.
連結:
-
Chen, Y. C.,Chen, C. M.,Chen, Y. C.(2007).Accelerated life estimation for LCD modules using artificial neural network based on Taguchi method.International Journal of Industrial Engineering Theory-Applications and Practice,14(3),289-297.
-
Cohen, A. C.(1965).Maximum likelihood estimation in the Weibull Distribution based on complete and on censored sample.Technometrics,7(4),579-588.
-
Efron, B.(1988).Logistic regression, survival analysis and the Kaplan-Meier curve.Journal of the American Statistical Association,83(402),414-425.
-
Elsayed, E. A.(1996).Reliability Engineering.New York:Addison Wesley Longman.
-
Harter, H. L.,Moore, A. H.(1965).Maximum likelihood estimation of the parameters of Gamma and Weibull population from complete and from censored samples.Technometrics,7(4),639-643.
-
Kaplan, E. L.,Meier, P.(1958).Nonparametric estimation from incomplete observation.Journal of American Statistical Association,53(282),457-481.
-
Keats, J. B.,Lawrence, F. P.,Wang, F. K.(1997).Weibull maximum likelihood parameter estimates with censored data.Journal of Quality Technology,29(1),105-110.
-
Kitagawa, K.,Toriyama, K.,Kanuma, Y.(1984).Reliability of liquid crystal display.IEEE Transactions on Reliability,33(3),213-218.
-
Thoman, D. R.,Bain, L. J.,Antle, C. E.(1969).Inference on the parameters of the Weibull distribution.Technometrics,11(3),445-460.
-
Tobias, P. A.,Trindade, D. C.(1998).Applied Reliability.New York:Chapman & Hall/CRC.
-
Weibull, W.(1951).A statistical distribution function of wide applicability.Journal of Applied Mechanics,18,293-297.
-
Ying, Z.,Wei, L. J.(1994).The Kaplan-Meier estimate for dependent failure time observations.Journal of Multivariate Analysis,50(1),17-29.
-
王宗華(1998)。可靠度工程技術手冊。台北:中華民國品質學會。
-
柯輝耀(1997)。可靠度保證─工程與管理技術之應用。台北:中華民國品質學會。
|