题名

The Determination of Optimum Process Mean for a One-Sided Specification Limit Product with Manufacturing Cost and Linear Quality Loss

并列篇名

基於製造成本與線性品質損失考量的單邊規格界限產品最佳製程平均數設定

作者

陳忠和(Chung-Ho Chen);黃國偉(Kuo-Wei Huang)

关键词

二次品質損失函數 ; 規格界限 ; 製程平均數 ; linear quality loss function ; specification limit ; process mean

期刊名称

品質學報

卷期/出版年月

18卷1期(2011 / 03 / 01)

页次

19 - 33

内容语文

英文

中文摘要

本研究將提出產品具不同品質特性的最佳化模式來決定最佳的製程平均數。研究中採線性品質損失函數來量測產品的品質損失,假設產品具單邊規格界限且產品製造成本爲線性函數,在規格界限內的製造成本與品質特性值偏離規格界限的距離成正比,而在規格界限外的製造成本則假設爲常數。本研究模式的目標爲獲取涵蓋製造商與消費者兩者平均總成本爲最小下的最佳製程平均數,文中將舉常態、對數常態、指數、韋伯等品質特性的數值例子加以說明。

英文摘要

In this paper, we propose the optimization models for determining the optimum process mean under different quality characteristic to minimize the manufacturing cost and the quality loss. The linear quality loss function is used in measuring the quality loss of product. The manufacturing cost is assumed to be positively and linearly proportional to deviation from the one-sided specification limit when the quality characteristic is within specification. The constant manufacturing cost happens when the quality characteristic exceeds specification. The objective of model is to obtain the optimum process mean based on the minimum total expected cost of manufacturer and consumer. Some numerical examples including the normal, lognormal, exponential, and Weibull quality characteristics are provided for illustration.

主题分类 社會科學 > 管理學
参考文献
  1. Bisgaard, S.,Hunter, W. G.,Pallesen, L.(1984).Economic selection of quality and manufactured product.Technometrics,26(1),9-18.
  2. Carlsson, O.(1984).Determining the most profitable process level for a production process under different sales conditions.Journal of Quality Technology,16(1),44-49.
  3. Chen, C. H.(2004).Determining the optimum process mean of a one-sided specification limit with the linear quality loss function of product.Journal of applied Statistics,31(6),693-703.
  4. Chen, C. H.(2007).Determining the optimum process mean based on manufacturing cost and quality loss.Pertanika Journal of Science and Technology,15(1),49-60.
  5. Chen, C. H.,Chou, C. Y(2005).Determining a one-sided optimum specification limit under the linear quality loss function.Quality and Quantity,39(1),109-117.
  6. Chen, C. H.,Huang, K. W.(2006).Optimum process mean for a one-sided specification limit product considering manufacturing cost and quadratic quality loss.Journal of Chung Cheng Institute of Technology,34(2),71-86.
  7. Cho, B. R.,Leonard, M. S.(1997).Identification and extensions of quasiconvex quality loss functions.International Journal of Reliability, Quality and Safety Engineering,4(2),191-204.
  8. Golhar, D. Y.(1987).Determination of the best mean contents for a canning problem.Journal of Quality Technology,19(2),82-84.
  9. Golhar, D. Y.(1988).Computation of the optimal process mean and the upper limit for a canning problem.Journal of Quality Technology,20(3),193-195.
  10. Golhar, D. Y.,Pollock, S. M.(1992).Cost savings due to variance reduction in a canning process.IIE Transactions,24(1),88-92.
  11. Golhar, D. Y.,Pollock, S. M.(1988).Determination of the optimal process mean and the upper limit for a canning problem.Journal of Quality Technology,20(3),188-192.
  12. Hunter, W. G.,Kartha, C. P.(1977).Determining the most profitable target value for a production process.Journal of Quality Technology,9(4),176-181.
  13. Jeang, A.(1995).Economic tolerance design for quality.Quality and Reliability Engineering International,11(2),113-121.
  14. Jeang, A.(1996).Optimal tolerance design for product life cycle.International Journal of Production Research,34(8),2187-2209.
  15. Lee, M. K.,Hong, S. H.,Elsayed, E. A.(2001).The optimum target value under single and two-stage screenings.Journal of Quality Technology,33(4),506-514.
  16. Lee, M. K.,Hong, S. H.,Kwon, H. M.,Kim, S. B.(2000).Optimum process mean and screening limits for a production process with three-class screening.International Journal of Reliability, Quality and Safety Engineering,7(3),179-190.
  17. Li, M. H. C.(2002).Unbalanced tolerance design and manufacturing setting with asymmetrical linear loss function.International Journal of Advanced Manufacturing Technology,20(5),334-340.
  18. Li, M. H. C.(2002).Optimal process setting for unbalanced tolerance design with linear loss function.Journal of the Chinese Institute of Industrial Engineers,19(5),17-22.
  19. Li, M. H. C.(2000).Quality loss function based manufacturing process setting models for unbalanced tolerance design.International Journal of Advanced Manufacturing Technology,16(1),39-45.
  20. Li, M. H. C.(1998).Optimal setting of the process mean for an asymmetrical truncated loss function.Proceedings of the Chinese Institute of Industrial Engineers Conference
  21. Li, M. H. C.(1997).Optimal setting of the process mean for asymmetrical quadratic quality loss function.Proceedings of the Chinese Institute of Industrial Engineers Conference
  22. Li, M. H. C.,Cherng, H. S.,(2000).Unbalanced tolerance design with asymmetric truncated linear loss function.Proceedings of the 14th Asia Quality Symposium
  23. Li, M. H. C.,Chirng, H. S.(1999).Optimal setting of the process mean for asymmetrical linear quality loss function.Proceedings of 1999 Conference on Technology and Applications of Quality Management for Twenty-first Century
  24. Li, M. H. C.,Chou, C. Y.(2001).Target selection for an indirectly measurable quality characteristic in unbalanced tolerance design.International Journal of Advanced Manufacturing Technology,17(7),516-522.
  25. Li, M. H. C.,Wu, F. W.(2001).A general model of unbalanced tolerance design and manufacturing setting with asymmetric quadratic loss function.Proceedings of Conference of the Chinese Society for Quality
  26. Li, M. H. C.,Wu, F. W.(2002).A general model of manufacturing setting with asymmetric linear loss function.Proceedings of the 38th Annual Conference of Chinese Society for Quality and The 6th National Quality Management Symposium
  27. Maghsoodloo, S.,Li, M. H. C.(2000).Optimal asymmetric tolerance design.IIE Transactions,32(12),1127-1137.
  28. Misiorek, V.,Barnett, N. S.(2000).Mean selection for filling processes under weights and measures requirements.Journal of Quality Technology,32(2),111-121.
  29. Phillips, M. D.,Cho, B. R.(2000).A nonlinear model for determining the most economic process mean under a beta distribution.International Journal of Reliability, Quality and Safety Engineering,7(1),61-74.
  30. Taguchi, G.(1986).Introduction to Quality Engineering.Tokyo, Japan:Asian Productivity Organization.
  31. Trietsch, D.(1999).Statistical Quality Control - A Loss Minimization Approach.Singapore:World Scientific Publishing Co..
  32. Wen, D.,Mergen, A. E.(1999).Running a process with poor capability.Quality Engineering,11(4),505-509.
  33. Wu, C. C.,Tang, G. R.(1998).Tolerance design for products with asymmetric quality losses.International Journal of Production Research,36(9),2529-2541.